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Abstract
A multi-channel localized surface plasmon resonance system is described for absorptiometric determination of abscisic acid (ABA).
The system is making use of gold nanoparticles and consists of a broadband light source, a multi-channel alignment device, and a fiber
spectrometer. The method is based on the specific interaction between an ABA-binding aptamer and ABA. This induces the growth of
gold nanoparticles (AuNPs) functionalized with a polyadenine-tailed aptamer that act as optical probes. Different concentrations of
ABA give rise to varied morphologies of grown AuNPs. This causes a change of absorption spectra which is recorded by the system.
ABA can be quantified by measurement of the peak wavelength shifts of grown AuNPs. Under optimized conditions, this method
shows a linear relationship in the 1 nM to 10μMABA concentration range. The detection limit is 0.51 nM. The sensitivity of the ABA
assay is strongly improved compared to the method based on salt-induced AuNP aggregation. This is attributed to the use of a poly-A-
tailed aptamer and the catalytic ability of AuNPs. In the actual application, the ABA concentration of ABA in fresh leaves of rice is
measured with the maximum relative error of 8.03% in comparison with the ELISA method.

Keywords Aptamer-AuNPs probes . Catalytic growth . Alignment device . Fiber spectrometer . Plant hormone . Varied
morphologies . Absorption spectra . Peakwavelength shift

Introduction

Abscisic acid (ABA) is a plant hormone that improves a plant′s
tolerance to adverse environmental effects besides maintenance
of bud and seed dormancy. Generally, ABA controls growth

and development of plants including seed maturation, root for-
mation and leave size among others [1]. Therefore, detection of
ABA concentration can provide information about a plant′s
health and its ability to cope with stress. Traditional ABA de-
tection involves spectroscopic [2, 3], electrochemical [4, 5] and
chromatographic methods such as high-performance liquid
chromatography (HPLC) [6] and liquid chromatography/mass
spectrometry (LC/MS) [7–9]. However, some of these methods
require large-scale instruments and use of antibodies with com-
plicated preparation procedures. For further investigation of
plant hormone regulation and signal transduction, some ap-
proaches with high sensitivity and specificity for ABA detec-
tion are strongly desired.

Colorimetric and light scattering methods based on local-
ized surface plasmon resonance (LSPR) have been often used
to quantify a variety of analytes that range from small mole-
cules and ions [10, 11], proteins [12], nucleic acids [13], food
contaminants [14, 15] to diagnostic compounds [16–18].
Approaches have been used to measure the LSPR
also include reflection spectroscopy and dark-field imaging
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[19]. Among these spectral measurements, transmission spec-
troscopy is used in routine analysis to record the absorption
spectra when the incident light interacts with the nanoparti-
cles. In our group, we demonstrated a LSPR approach involv-
ing salt-induced aggregation of gold nanoparticles (AuNPs)
for detection of ABA with the detection limit of μM order
[20]. The method exploited aptamer as the specific recogni-
tion element and AuNPs as the probe. The spectra were ac-
quired through a commercial UV-Vis spectrometer. For most
commercial UV-Vis spectrometers, however, spectral signal
acquisition needs a process of wavelength scanning, which
makes the measurements time-consuming. Several optical fi-
ber techniques have received great attentions for fast spectral
signals acquisition [21–24]. The changes in absorption spectra
can be monitored using an optical fiber spectrometer, which
eliminates the need for scanning.

The combination of DNA and AuNPs have been widely
utilized for biosensing materials and strategies [25–27].
Studies have found that the base adenine (A), thymine (T),
cytosine (C) and guanine (G) of DNA have different affinity
towards the surface of AuNPs, where the binding affinity of
base A is higher than the others [28, 29]. Depending on the
strong affinity of polyA sequence to AuNPs, the polyA-
tailed aptamer conjugated to AuNPs provide a novel analyt-
ical approach. This makes the conjugation process of DNA
andAuNPs convenient and effective [30, 31].When DNA is
attached on the AuNP surface, the physicochemical proper-
ties including catalytic ability of bare AuNPs are changed.
The sequence-dependent affinity between DNA and AuNPs
can be used to mediate the catalytic growth of AuNPs. This
result in different morphologies and colour appearance,
which corresponds to different absorption bands [32–36].
Aptamers are single-stranded DNA/RNA and well-known
as alternatives to antibodies. They are widely used as recog-
nition elements in biosensing analysis due to the advantages
of small molecular weight, non-immunogenicity, and easy
modification [37, 38].

In this work, we mainly focus on (i) constructing a multi-
channel LSPR biosensing system for rapid acquisition of
spectral signal; (ii) investigating different aptamer-
functionalized AuNPs probe and selecting an optimized favor-
able AuNP probe for ABA detection with high sensitivity. It is
already known that the catalytic ability of bare AuNPs are
changed when their surfaces are attached with aptamers. The
approach employed here for ABA detection utilizes polyA-
tailed aptamer and the catalytic growth of aptamer-
functionalized AuNPs. The grown AuNPs exhibited different
morphologies and colour variations with different concentra-
tion of ABA. They were then characterized by the biosensing
system and transmission electron microscopy (TEM).
Compared with salt-induced gold nanoparticles aggregation
methods and commercial instruments, this work demonstrated
an improved strategy for ABA detection with high sensitivity.

Experimental

Materials and reagents

PolyA-tailed aptamers were synthesized by Sangon
Biotechnology Co., Ltd. (Shanghai, China, www.sangon.
com) (Table 1 and Table S1). 5 nm AuNPs were purchased
from BBI Solutions (Cardiff, UK, www.bbisolutions.com).
(±)-Abscisic acid ((±)-ABA), Gibberellic acid (GA3), and 3-
Indoleacetic acid (IAA) were purchased from Sigma-Aldrich
Co., Ltd. (USA, www.sigmaaldrich.com). Tetrachloroauric
(III) acid tetrahydrate (HAuCl4·4H2O) and Hydroxylamine
(NH2OH) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China, www.sinoreagent.com).
Methanol, formic acid and acetic acid were purchased from
Shanghai Aladdin biological technology Co. Ltd. (China,
www.aladdin-e.com). ABA commercial ELISA kits were
purchased from Shanghai MLBIO Biotechnology Co., Ltd.
(Shanghai, China, www.mlbio.com). Fresh leaves of rice
were provided by Agronomy College of Henan Agricultural
University. Ultra-pure water was used throughout the
experiment.

Construction of a multi-channel biosensing system

The schematic of a multi-channel LSPR biosensing system
in a transmission mode is shown in Fig. 1, which consisted
of a tungsten halogen lamp (HL-200, Ocean Optics), a
fiber optic variable attenuator, three multimode optical fi-
bers, two 74-UV collimation lens, a fiber spectrometer
(USB2000+, Ocean Optics), and a home-made multi-chan-
nel alignment device. From Fig. 1a, the incident light in
the spectral range 360–2000 nm was emitted by the tung-
sten halogen lamp and then adjusted to a suitable intensity
by the attenuator. Then the light was focused onto the
samples inside the multi-channel device with the assis-
tance of a 74-UV collimation lens. Thereafter, the other
74-UV collimation lens was used to collect the transmis-
sion light. Finally, the transmitted light was dispersed in
the fiber spectrometer and the absorption spectra were
displayed.

Figure 1b depicts the multi-channel alignment device. It
includes two sliding plates that can be moved along the
reciprocal vertical guided rail (in both the X and Y direc-
tion). The two sliding directions (i.e. X and Y) were
achieved with the help of 12 and 8 positioning holes de-
signed on the guided rails, respectively. This device can
fully match the commercial 96-well plates. Two steel balls
and mechanical springs were embedded inside the position-
ing holes of the both rails. When the guided rail moves
forward a certain distance, a steel ball is impelled into the
positioning hole by the elasticity of the spring. Upon
reaching the terminal positioning hole (i.e. the guided rail),
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it will hit the block and is stopped. Consequently, precise
positioning is realized. To investigate the effect of different
positions, the following experiments were carried out. The
spectra of 13.5 nm AuNPs samples were recorded at differ-
ent positions of the 96-well plates and the spatial distribu-
tion of absorbance at 520 nm is shown in Fig. S1. The
results demonstrated that there was good consistency
among the different positions of the multi-channel system.

Preparation of aptamer-functionalized AuNPs probes

The 5 nm AuNPs were conjugated with ABA aptamers which
possesses different sequences and polyA tails. Before conju-
gation, the aptamers were annealed at 95 °C for 5 min and then

cooled in ice bath for another 5 min. After that, 10μL of 1 μM
aptamers were incubated with 3.75 μL AuNPs (8.3 nM) at
room temperature overnight. To obtain a final constant vol-
ume of 180 μL, corresponding volumes of ultra-pure water
were added.

Catalytic growth of polyA-tailed
aptamer-functionalized AuNP probe for improved
ABA detection

After the functionalized-AuNPs probes were synthesized,
20 μL of different concentrations of ABAwere added. Then,
5 μL NH2OH (400 mM) and 10 μL HAuCl4 (1.9 mM) were
added to initiate the catalytic growth of AuNPs. After the
AuNPs have been thoroughly mixed, incubation was per-
formed again for another 5 min. An amount of 10 μL
chloroauric acid (1.9 mM) was repeatedly added for three
times since the catalytic growth of the probe stopped at a
volume of 40 μL HAuCl4 (1.9 mM), see Fig. S2. Finally,
the samples were arranged to acquire the absorption spectra.

Sample pretreatment

The pretreatment procedures of fresh leaves of rice are
listed as follows. (i) 100 mg of fresh leaves were cut
into a number of small pieces and kept in a 2 mL
centrifuge tube. (ii) the small pieces were ground using
liquid nitrogen with the help of steel balls and then it
was performed with a 30 min ultrasound treatment after
adding 200 μL methanol-water-formic acid solution
(15:4:1, v/v/v). (iii) the formed mixture was centrifuged
for 15 min (10,000 rpm, 4 °C) and then the supernatant
was kept in a 1.5 mL centrifuge tube. (iv) the residues
at the bottom of centrifuge tube was extracted for twice
with 100 μL of methanol-water-formic acid (15:4:1, v/v/
v) and the supernatant was also transferred to the above
1.5 mL centrifuge tube. (v) the supernatant was filtered
with 0.22 μM filter membrane. (vi) the filtrate was
dried by nitrogen and then dissolved with 500 μL
methanol-water-acetic acid (90:10:0.05, v/v/v) for future
analysis.

Fig. 1 Schematic of the multi-channel LSPR biosensing system (a) and
the multi-channel alignment device (b)

Table 1 Sequences of the
aptamers with different polyA tail
at the 5′- position

Name Sequences (5′-3′)

Apt-5′-2A AAATGGGTTAGGTGGAGGTGGTTATTCCGGGAATTCGCCCTAAATACGAGCAAC

Apt-5′-3A AAAATGGGTTAGGTGGAGGTGGTTATTCCGGGAATTCGCCCTAAATACGAGCAAC

Apt-5′-4A AAAAATGGGTTAGGTGGAGGTGGTTATTCCGGGAATTCGCCCTAAATACGAGCAAC

Apt-5′-5A AAAAAATGGGTTAGGTGGAGGTGGTTATTCCGGGAATTCGCCCTAAATACGAGCAA
C
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Results and discussion

Detection principle of ABA

The principle of our detection approach for ABA is shown in
Scheme 1. Due to the physical adsorption [39, 40], the aptamer
for ABAwas attached onto the surface of AuNPs and forming
an aptamer-functionalized AuNPs probes. In the presence of
ABA, the aptamer conformation changed into a G-
quadruplex-like structure and specifically bound with ABA.
This results in desorption of aptamers onto the surface of
AuNPs. The amount of aptamers attached onto the surface of
AuNPs depended on ABA concentration. In fact, the higher the
ABA concentration was added, the fewer amounts of aptamers
were attached onto the surface of AuNPs. On the other hand,
when ABA was absent, the aptamers remained attached onto
the surface of AuNPs. The surfaces of non-aptamer attached
AuNPs were completely exposed. The difference in surface
state can, therefore, lead to the differences in physicochemical
properties including catalytic ability of AuNPs.

Considering the above information, NH2OH, a reducing
agent, and HAuCl4, a growth-promoting agent were sequen-
tially added into the above solution. This initiated the catalytic
growth reaction of AuNPs. During the growth process, the
bare AuNPs grew into larger spherical particles and the colour
appeared red. Similarly, the AuNPs with a low coverage of
aptamers tended to grow into spheroidal particles.
Interestingly, the AuNPs with a high coverage of aptamers
was found to disturb the uniform growth of AuNPs. This
results in more branches of grown AuNPs and a blue-
coloured solution, as demonstrated by the LSPR spectra and
TEM images. In brief, upon the addition of different concen-
tration of ABA, the catalytic growth of aptamer-
functionalized AuNPs probes generated morphologically var-
ied nanostructures with different colours and LSPR spectra,
thereby achieving detection of ABA.

To further demonstrate the possibility of the detection ap-
proach, the catalytic growth of AuNPs was implemented under
different experimental conditions (see Fig. 2). As conceived, the
colour of bare AuNPs after catalytic growth appeared red and the
TEM image displayed a spherical morphology (see inset (I) in
Fig. 2a and b). However, the colour of grown AuNPs with at-
tached aptamer and without ABAwas blue and a branched mor-
phology was acquired (as shown in inset (II) of Fig. 2a and b).
Differently, the colour of grown AuNPs with attached aptamer
and ABA was purple and the TEM image showed a less
branched morphology (see inset (III) in Fig. 2a and b).
Accordingly, the colour andmorphological changes of the grown
AuNPs were characterized by the LSPR spectra, which were
quickly recorded by the multi-channel LSPR system and a blue
shift was observed (as shown in Fig. 2c).

The modified aptamer-functionalized AuNPs probe

For the ABA aptamer with no polyA tail, the peak wavelength
shift with respect to the blank (Δλ) was 3.04 nm for 10 nM
ABA concentration, as shown in Fig. 3a. It is well known that
base A has a much higher binding affinity to AuNPs [28, 29].

Fig. 2 Photographs showing different colours of the grown AuNPs in the
absence and presence of aptamer and ABA and aptamer only (a) and
TEM images generated after the growth of 5 nm AuNPs under different
conditions (b). The corresponding absorption spectra recorded by the
multi-channel LSPR system (c)Scheme 1 Schematic illustration of the principle for ABA detection
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We conceived that the strong interaction between polyA-tailed
aptamer and AuNPs should be good for achieving a higher
detection sensitivity. With the use of polyA-tailed aptamer, the
acquired peak wavelength shift was 6.51 nm for the 10 nM
ABA concentration (see Fig. 3b). Obviously, the use of
polyA-tailed aptamer had an influence on the peak wave-
length shift. In this regard, different polyA tails were added
at the 5′- position and 3′- position of the aptamer sequence
respectively, as listed in Table 1 and Table S1. The spectra and
the peak wavelength shifts are shown in Fig. S3 and Fig. S4
for different polyA-tailed aptamers. For some aptamers with
different polyA tails, the blank peak wavelength was larger
than that of target. The explanation of this was that the affinity
between polyA-tailed aptamer and AuNPs was higher than
that of ABA and its aptamer. The results showed that the peak
wavelength shift of Apt-5′-3Awas largest for ABA detection
among the above aptamers with different sequence, which
mean that the sensitivity from Apt-5′-3Awas higher. For this
reason, Apt-5′-3A was selected for the subsequent studies.
From the experimental results, it can be concluded that the

number of polyA tails and its position are critical for detection
sensitivity.

Optimization of polyA-tailed aptamer concentration

The influence of concentration of the selected Apt-5′-3A
on AuNP growth reaction was also investigated. A series
of Apt-5′-3A concentration of 0, 12.5 nM, 25 nM,
37.5 nM, 50 nM, 62.5 nM, and 75 nM were studied. As
shown in Fig. 4a, different concentrations of Apt-5′-3A

Fig. 3 Comparison for detection of ABA between the aptamer without
and with polyA tail

Fig. 4 a Images of different colours for grown AuNPs under different
concentrations of Apt-5′-3A. bAbsorption spectra, and (c) corresponding
peak wavelength of grown AuNPs with an increase in the concentration
of Apt-5′-3A. Error bars represent standard deviations of sample
measurements (n = 3)
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attached on the AuNPs surface gave rise to different col-
ours of grown AuNPs. The colour of the solutions changed
from red to purple, and then to blue with increase in Apt-
5′-3A concentration. When the concentration of Apt-5′-3A
was beyond 50 nM, all the grown AuNPs appeared blue.
Figure 4b shows the absorption spectra of the grown
AuNPs using the multi-channel LSPR system. With in-
crease of Apt-5′-3A concentration, a continuous red shift
of the LSPR peak wavelength was observed (see Fig. 4b
and c). Also, Fig. 4b and c shows that when the

concentration of Apt-5′-3A was greater than 50 nM, the
peak wavelength increased slightly. The spectral changes
were consistent with the colour changes. These results sug-
gested that the AuNP surface was completely covered
when the concentration of Apt-5′-3A reached to 50 nM.
Based on these observations, the 50 nM concentration of
Apt-5′-3A was selected to prepare the polyA-tailed func-
tionalized-AuNPs probe, thereby achieving sensitive de-
tection of ABA.

Fig. 5 a Photographs showing the colour of grown AuNP solution for
ABA detection. bAbsorption spectra of the grownAuNPs under different
concentrations of ABA. c Peak shifts of various ABA concentrations with
respect to the peak wavelength of blank. Insert: Calibration plot
established from the peak wavelength shifts using different

concentrations of ABA samples in the range of 1 nM-10 μM. Error
bars represent standard deviations of sample measurements (n = 3). d
TEM images of grown AuNPs (I) Blank, (II) 10 nM ABA, (III) 1 mM
ABA, and (IV) AuNPs without the attached polyA-tailed aptamer

Table 2 Analytical results of
ABA in fresh leaves of rice (n = 3) Sample Mean value found by

present method (nM)
Mean value found by
ELISA method (nM)

Relative error compared
with ELISA kits (%)

1 76.84 ± 1.69 71.35 ± 1.23 7.69

2 77.76 ± 2.11 71.97 ± 1.37 8.03

3 88.64 ± 1.84 82.22 ± 1.18 7.81
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Determination of ABA

Under the optimal concentration of Apt-5′-3A described above,
different concentrations of ABA were detected in the range of
0.1 nM-1 mM. The Apt-5′-3Awas firstly adsorbed on the surface
of 5 nm AuNPs. Then the polyA-tailed aptamer-functionalized
AuNP probes were incubated with different concentration of
ABA. Addition of growth solution initiated the catalytic growth
of AuNPs, thus obtaining grown AuNP-solutions with different
colours and spectra. As shown in Fig. 5a, the colour of grown
AuNPs changes from blue to purple with the increasing concen-
tration of ABA in the range of 0.1 nM-1 mM, corresponding to
blue shift of peak wavelength in LSPR spectra (see Fig. 5b and
Fig. S5). Based on the spectral changes, a dose-response
curve for the peak wavelength shifts (Δλ) was drawn
(Fig. 5c). As depicted in the inset of Fig. 5c, a calibration
plot was established using the fitting equation Δλmax =
5.45085 + 0.9471 × log C. A correlation coefficient of
0.981 in the range of 1 nM −10 μM was acquired. In the
equation, Δλmax represents the peak wavelength shift with
respect to the blank and C is the concentration of ABA
(nM). From the calibration plot, the limit of detection
(LOD) of 0.51 nM was calculated, which is determined
by the formula 3σ/slope, where σ is the standard deviation
and slope can be acquired from the linear calibration plot.
As expected, the TEM images in Fig. 5d also displayed the
varied morphologies of grown AuNPs due to different con-
centrations of ABA. This was consistent with colour and
the spectral changes. Compared with our previous study of
ABA detection using salt-induced AuNPs aggregation
[20], the sensitivity of this approach was improved by
more than 300 times. And the LOD is much lower than
some of the reported methods [2, 3, 5] (see Table S2).
The results demonstrate that the absorptiometric determi-
nation approach can be used for sensitive detection of
ABA without use of large-scale instruments and antibod-
ies. This improvement can be ascribed to the use of polyA-
tailed aptamer and catalytic growth of AuNPs.

In addition, to evaluate the selectivity of this method for
ABA detection, the possible interference of some other plant
hormones such as GA3 and IAAwere also studied. As shown
is Fig. S6, the peak wavelength shift is remarkable for 1 nM
ABA, while smaller shifts were observed for 1 μM GA3 and
1 μM IAA, respectively. The results indicated that this ap-
proach satisfied specificity for the detection of ABA due to
high specificity between ABA and polyA-tailed aptamer. The
spectral acquisition eliminated the wavelength scanning pro-
cess and can be acquired rapidly.

ABA determination in rice leaves

To evaluate the performance of this approach in practical appli-
cations, three samples of rice leaves were chosen and the ABA

concentration was measured. In order to compare the reliability,
the ABA concentraion of these samples was also measured by
using commercial ELISA kits. The results are summarized in
Table 2. From Table 2, the maximum calculated relative error
is 8.03% in comparison with the ELISA method. It can be con-
cluded that there is good agreement existed between two
methods. The results demonstrate that this absorptiometric deter-
mination approach can be used to measure ABA in real samples.

Conclusions

A multi-channel biosening system was constructed for
absorptiometric determination of ABA. The LSPR system can
rapidly acquire the spectral signals without wavelength scanning
procedure. Based on the LSPR biosensing, the improved detec-
tion of ABA with high sensitivity and specificity has been
achieved due to the use of polyA-tailed aptamer -functionalized
AuNPs probe and catalytic growth of AuNPs. For the achieve-
ment of target detection, the design and optimization of the se-
quence of the used aptamer is very important. Under the optimal
conditions, this approach exhibited a good linear relationship in
the ABA concentration ranged from 1 nM to 10 μM. The detec-
tion limit of 0.51 nM is lower than the salt-induced AuNPs
aggregation method. As compared with the ELISA method, the
ABA concentration in fresh leaves of rice has been quantified by
this LSPR system with the relative errors ranged from 7.69% to
8.03%. These results demonstrate that this inexpensive and rapid
multi-channel LSPR system provides great potential for biosens-
ing applications.
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