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Abstract
Kinetic analysis of biomolecular interactions are powerfully used to quantify the binding

kinetic constants for the determination of a complex formed or dissociated within a given

time span. Surface plasmon resonance biosensors provide an essential approach in the

analysis of the biomolecular interactions including the interaction process of antigen-

antibody and receptors-ligand. The binding affinity of the antibody to the antigen (or the

receptor to the ligand) reflects the biological activities of the control antibodies (or receptors)

and the corresponding immune signal responses in the pathologic process. Moreover, both

the association rate and dissociation rate of the receptor to ligand are the substantial param-

eters for the study of signal transmission between cells. A number of experimental data may

lead to complicated real-time curves that do not fit well to the kinetic model. This paper pre-

sented an analysis approach of biomolecular interactions established by utilizing the Mar-

quardt algorithm. This algorithm was intensively considered to implement in the homemade

bioanalyzer to perform the nonlinear curve-fitting of the association and disassociation pro-

cess of the receptor to ligand. Compared with the results from the Newton iteration algo-

rithm, it shows that the Marquardt algorithm does not only reduce the dependence of the

initial value to avoid the divergence but also can greatly reduce the iterative regression

times. The association and dissociation rate constants, ka, kd and the affinity parameters for

the biomolecular interaction, KA, KD, were experimentally obtained 6.969×105 mL�g-1�s-1,
0.00073 s-1, 9.5466×108 mL�g-1 and 1.0475×10-9 g�mL-1, respectively from the injection of

the HBsAg solution with the concentration of 16ng�mL-1. The kinetic constants were evalu-

ated distinctly by using the obtained data from the curve-fitting results.
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Introduction
Kinetic analysis of biomolecular interactions that are affected by partial mass transfer is the
most difficult task in the quantity of binding kinetic constants [1–2]. There are several
approaches have been suggested to perform the analysis of biomolecular interactions based on
the use of the kinetic model, differing in how data are selected [3]. The high quality kinetic data
can be extracted from the curve where binding is closer to equilibrium. The kinetic analysis of
biomolecular interaction can also be applied to detect the toxic molecules in food safety, envi-
ronmental pollutants and life science [4–5]. In immunology, the binding strength between
antibody and antigen reflects the biological activities of the control antibody and its immune
response significance in the pathologic process [6–7]. Moreover, both the association rate and
dissociation rate of antigen to antibody (receptor to ligand) are the important parameters for
the study of signal transfer between cells [8–9]. The traditional methods involving the kinetic
analysis of biomolecular interactions are mainly included ELISA (Enzyme-Linked Immunosor-
bent Assay), Equilibrium Dialysis, and Affinity Chromatography [10–12]. By comparison with
these technologies, the most prominent characteristics of the surface plasmon resonance bio-
sensor are the real-time monitor of the kinetic process without marking the biological mole-
cules. In these experiments of biomolecular interactions using the traditional method, a limited
binding partner with suitable spectroscopic properties such as fluorescent tags or other labels
should be screened to give a useful fluorescence spectrum [13]. However, in recent advances,
the development of optical surface plasmon resonance (SPR) biosensors for accurate kinetic
and affinity analysis makes the biomolecular monitor powerful [14–16]. The ability of SPR
biosensors to analyze biomolecular interactions in real time features the quantity of the affinity
of ligand for its receptor and the kinetics parameters of the interaction [17]. Furthermore,
SPR technology makes possible a detailed analysis of biomolecular interactions at the molecu-
lar level, as well as enabling the analysis of multimolecular complex assembly and function
[18–19]. From the sensorgram obtained from the SPR biosensor, the relationship between RUs
(response unit) and time(s) established in the process of association and dissociation of biomo-
lecular interactions is a complicated nonlinear function. There is a number of instrumentation-
based analysis software for use in obtaining kinetic constants. For example, sensorgrams may
be figured out using one of several binding models provided with evaluation software from
SensiQ and Autolab [20]. Another analysis approach is performed by using the powerful soft-
ware OriginPro which can be applied to process the known data using the nonlinear curve fit-
ting. Although the kinetic constants can be obtained easily from the known evaluation
software, however, it can’t be embedded into the microcontroller in the design of the home-
made bioanalyzer using the SPR biosensor due to intellectual property. The Newton iteration
algorithm for the calculation of kinetic constants of biomolecular interactions has been
described [21]. We have found that this method had a great dependence of the initial value.
Moreover, the fitting results are likely to be divergent with different initial conditions. This
paper proposes a powerful method to implement the kinetic data analysis for biomolecular
interactions using the Marquardt algorithm based on Gauss-Newton algorithm. The pseudo
first order kinetic model of biomolecular interaction was established firstly. Then, the data col-
lected from the biomolecular interaction between the hepatitis B surface antigen (HBsAg) and
the hepatitis B surface antibody (HBsAb) was obtained by the homemade SPR bioanalyzer
[22]. Finally, we used this approach established by the Marquardt algorithm to perform the
nonlinear curve-fitting for the calculation of the association and dissociation rate constants
and the affinity constants. The results show that Marquardt algorithm does not only reduce the
dependence of initial value to avoid the problem of data divergence but also greatly reduce the
iterative regression times.
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Materials and Methods

Materials
The three-channel Spreeta modules (TSPR1K23) manufactured with the gold slide bonded to
the sensor modules were from Nomadics, Inc. (Stillwater, USA). Hepatitis B surface antibody
(HBsAb) was purchased from Zhengzhou Biocell Antibody Centre (Henan, China). The
HBsAb was stored frozen, and its standard solutions were prepared daily with phosphate buffer
solution (PBS). An ELISA diagnostic kit for Hepatitis B surface antigen (HBsAg) was pur-
chased from Shanghai Rongsheng Biotech Co., Ltd. (Shanghai, China). The standard HBsAg
solutions were diluted with PBS (pH 7.4) and stored at 4°C. Double distilled water was
used throughout the whole experiment. A 0.01M PBS (pH 7.4) was prepared by dissolving
0.24 g KH2PO4, 8.0 g NaCl, 1.44 g K2HPO4 and 0.2 g KCl in 1000 mL double distilled water.

Kinetic model
If a single ligand binds to the receptor in a 1:1 stoichiometric ratio to form the receptor-ligand
complexes, the association process is described by considering two substances ligand L and
receptor R, which were combined to emerge a complex LR [23–25]. In a practical reaction,
both the association and dissociation processes occur simultaneously. For reversible associa-
tions and dissociations in a chemical equilibrium, it can be described by the following expres-
sion:

Lþ RÐ
kd

ka
LR ð1Þ

where, ka (mol•L-1•s-1) is the association rate constant used to describe the binding kinetic con-
stant between ligand L and receptor R. The dissociation rate constant kd (s

-1) is the ratio of the
concentration of the dissociated complex to the undissociated complex.

It is equally valid to write the rate equations as follows:

Association rate :
d½LR�
dt

¼ kaCLCR ð2Þ

Dissociation rate :� d½LR�
dt

¼ kdCLR ð3Þ

Net rate equation :
d½LR�
dt

¼ kaCLCR � kdCLR ð4Þ

where the brackets denote concentrations of the free R, free L and the concentrations of the
complex [RL] at equilibrium. From this equation, it can be seen that dissociation rate kd
and association rate ka for a given system can be determined any time. The concentrations of
[R], [L], and [RL] are measured under equilibrium conditions.

The net rate reached approximately to zero when the equilibrium condition was formed.

That is d½LR�
dt

¼ 0 and kaCLCR = kdCLR, therefore, it can be already expressed as

ka
kd

¼ CLR

CLCR

¼ KA ¼ 1

KD

ð5Þ

where, KA and KD are the equilibrium association and dissociation constants.
In the ligand binding process, two reactions take place as follows: (a) the total number of

associations per unit time interval in a particular region is proportional to the total number of
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receptors involved, because they all can create a complex with the same probability [26–27].
The relationship among the amount of the complexes formed per unit time Ca, the instanta-
neous concentration of the free analyte CL, and the concentration of free receptors CR-CLR is
expressed as

dCa

dt
¼ kaCL CR � CLRð Þ ð6Þ

(b) on the other hand, for each compound, there is certain probability that it will be dissociated
into ligand L and receptor R within a unit time interval. This probability is the same for all
compounds at the given conditions. The dissociation leads to a decrease of the compound con-
centrations proportional to its instantaneous value described as:

dCd

dt
¼ �kdCLR ð7Þ

where, Cd is the amount of the complex LR associated per unit time.
The rate of consumption of ligand L depends on both the concentration of ligand L and the

concentration of receptor R. The chemical equilibrium Eq (1) can be expressed by the pseudo
first order reaction rate equation (Kinetic equation) [28]. The corresponding differential equa-
tion is derived as follows:

dCLR

dt
¼ dCa

dt
þ dCd

dt
¼ kaCL CR � CLRð Þ � kdCLR ð8Þ

The instantaneous concentrations of complex LR can be indicated by the response values (R)
of the SPR biosensor. Furthermore, the concentrations of unfree receptor R obtained at equilib-
rium are represented by Rmax, the concentration of free receptor R is Rmax-R, accordingly, the
Eq (8) can be rearranged to:

dR
dt

¼ kaCL Rmax � Rð Þ � kdR ð9Þ

If the initial value R0 is 0 at the initial time t0 (t0 = 0), the value R can be solved from the Eq (9)
using the Integral Transformation Method, which is written as the following expression illus-
trated at the arbitrary time t,

R ¼ kaRmaxCL

kaCL þ kd
1� e�kobt
� � ð10Þ

where, kob = kaCL+kd
Then, we use the value of LReq instead of

kaRmaxCL
kaCLþkd

, the Eq (10) can be expressed as,

R ¼ LReqð1� e�kobtÞ ð11Þ

When the ligands combine with the receptors completely in the area of association, the dissoci-
ation process of compounds occurs. Therefore, in the dissociation process with the concentra-
tion of ligand L of 0, the Eq (9) can be rewritten in the following form.

dR
dt

¼ �kdR ð12Þ

For solving Eq (12) by Integral Transformation Methods, we get the values of RU from the
experiment performed by the SPR biosensor, that is

RU ¼ LReqe
�kdðt2�t1Þ ð13Þ
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where, t1 is the initial time of dissociation, t2 is arbitrary time between the initial time and the
end time, and RU is the response value of the SPR biosensor at time t2. The affinity constants
can be determined from the data obtained from the SPR biosensor at the steady response state
during the association phase.

Now, assume y = RU, a = LReq and b = kob, the Eq (11) can be simplified as:

y ¼ að1� e�bxÞ ð14Þ

The kinetic model of dissociation process (13) can be simplified to

y ¼ ae�mt ð15Þ

where,m = kd. The value ofm which is the dissociation rate constant calculated from the Mar-
quardt algorithm was evaluated firstly. Then the association rate constant can be obtained in
accordance with the expression b = kob = kaCL+kd. Accordingly, the values of affinity constant
KA and KD are calculated respectively.

Establishment of Curve-Fitting Algorithms

Gauss-Newton Algorithm
For the kinetic model of association y = a(1-e-bx), the corresponding yi were obtained from the
experiment of the SPR biosensor. Once parameters a, b are obtained, the kinetic model of asso-
ciation for a particular biomolecular interaction can be formed successfully. In order to solve
the equations, the initial value of a, b should be given, named a0, b0, respectively. The actual
values of a, b were obtained from the following expressions:a = a0+Δ1 and b = b0+Δ2, where,Δ1,
Δ2 represent the increments of a0, b0, respectively. Then the values of Δ1,Δ2 will be obtained
from the following procedures. The function of y = a(1-e-bx) is expanded using the Taylor series
at the point (a0, b0). The results will be expressed in Eq (16) by ignoring the quadratic term.

y ¼ yða0; b0Þ þ
@y
@a

D1 þ
@y
@b

D2 ¼ a0ð1� e�b0xÞ þ ð1� e�b0xÞ�1 þ ðxa0expð�b0xÞ�b0xÞD2 ð16Þ

The residual value Q between experimental and theoretical value is obtained by utilizing
least square method. The expression is shown as following,

Q ¼
XN
i¼1

ðyi � yÞ2̂ ) Q ¼
XN
i¼1

fyi � ½a0ð1� e�b0xiÞ þ ð1� e�b0xiÞD1 þ ðxia0e�b0xiÞD2�g
2

ð17Þ

where, y(a0, b0) is determined by the known a0, b0. Both
@y
@a
and @y

@b
are the function of indepen-

dent variable x. Moreover, x is the experimental result. Hence, Eq (14) can be simplified to the
linear relationship on Δ1,Δ2 as follows,

@Q
@a

¼ @Q
@D1

¼ �2
XN
i¼1

fy � ðað1� e�b0xiÞ þ ð1� e�b0xiÞD1

þ ð�a0xie
�b0xiÞD2Þg � ð1� e�b0xiÞ ¼ 0

ð18Þ
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Rearrange above Eq (18) to the following Eq (19).

@Q
@D1

¼
XN
i¼1

f½yið1� e�b0xiÞ � ða0ð1� e�b0xiÞÞ2� � ½ð1� e�b0xiÞ2 � D1�

þ½ðxia0e�b0xiÞ � D2 � ðxia0e�b0xiÞ2 � D2�g

)
XN
i¼1

f½ð1� e�b0xiÞ2 � D1� þ ½ðxia0e�b0xiÞ2 � ðxia0e�b0xiÞ� � D2g

¼
XN
i¼1

f½ð1� e�b0xiÞ � ðyi � a0ð1� e�b0xiÞÞ�g

ð19Þ

Correspondingly,

@Q
@b

¼ @Q
@D2

¼ �2
XN
i¼1

f½yi � a0ð1� e�b0xiÞ� þ ½ð1� e�b0xiÞ � D1�

þ½ð�xia0e
�b0xiÞ � D2�g � ½ð�xia0e

�b0xiÞ� ¼ 0 ð20Þ

@Q
@D2

¼ 0 )
XN
i¼1

f½ðxia0e�b0xiÞ � ð1� e�b0xiÞD1� þ ½ðxia0e�b0xiÞ2 � D2�g

¼
XN
i¼1

½ðxia0e�b0xiÞ� � ½yi � a0ð1� e�b0xiÞ� ð21Þ

where, the following substitution will be done.

@y
@a

¼ ð1� e�b0xiÞ ¼ A; ði ¼ 1; 2; 3 . . . . . .NÞ ð22Þ

@y
@b

¼ ðxia0e�b0xiÞ ¼ B; ði ¼ 1; 2; 3 . . . . . .NÞ ð23Þ

XN
i¼1

½ð1� e�b0xiÞ � ðyi � a0ð1� e�b0xiÞÞ� ¼ C ð24Þ

XN
i¼1

½ðxia0e�b0xiÞ� � ½yi � a0ð1� e�b0xiÞ� ¼ D ð25Þ

So, both expressions (17) and expression (19) can be arranged to:

XN
i¼1

A2
XN
i¼1

AB

XN
i¼1

AB
XN
i¼1

B2

0
BBBB@

1
CCCCA � D1

D2

 !
¼ C

D

 !
ð26Þ
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where

XN
i¼1

A2
XN
i¼1

AB

XN
i¼1

AB
XN
i¼1

B2

0
BBBB@

1
CCCCA ¼

@y1
@a

@y2
@a

. . . . . .
@yN�1

@a
@yN
@a

@y1
@b

@y2
@b

. . . . . .
@yN�1

@b
@yN
@b

0
BB@

1
CCA �

@y1
@a

@y1
@b

@y2
@a

@y2
@b

. . . . . . . . . . . .

@yN�1

@a
@yN�1

@b
@yN
@a

@yN
@b

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð27Þ

The expression (26) is the equation involving both unknown parameters Δ1,Δ2. Once both Δ1,Δ2
were obtained, both a1, b1 can be obtained according to the following expressions a1 = a0+Δ1, b1
= b0+Δ2. Here, a0,b0 are replaced by a1,b1. The iterative process may be continued to do until the
criterion for convergence is satisfied (e.g. max |Δ1|< = ε1 and max |Δ2|< = ε2). However, this
method is more dependent on the initial values. Obviously, different initial values can cause the
iterative divergence. For this reason, the Marquardt algorithm was introduced.

Marquardt algorithm
Marquardt algorithm is somewhat similar to the Gauss-Newton algorithm. Both the initial val-
ues a0, b0 are also previous given and the nonlinear model was implemented using the Taylor
series expansion at the point (a0, b0). Both Δ1,Δ2 were figured out by conducting the tangential
line. The iterative process may be continued to do until the situation for convergence is satis-
fied. In the Marquardt algorithm, residual value of Q is calculated by the following expression.

Q ¼
XN
i¼1

ðyi � yÞ2̂ ) Q ¼
XN
i¼1

fyi � ða0ð1� e�b0xiÞ þ ð1� e�b0xiÞD1

þð�xiae
�b0xiÞD2Þg2 þ dD1

2 þ dD2
2

ð28Þ

Where,

@Q
@D1

¼ 0 ) ð
XN
i¼1

A2 þ dÞD1 þ ð
XN
i¼1

ABÞD2 ¼ C ð29Þ

@Q
@D1

¼ 0 ) ð
XN
i¼1

ABÞD1 þ ð
XN
i¼1

B2 þ dÞD2 ¼ D ð30Þ

Converted the above expression (30) into the matrix form,

XN
i¼1

A2 þ d
XN
i¼1

AB

XN
i¼1

AB
XN
i¼1

B2 þ d

0
BBBB@

1
CCCCA � D1

D2

 !
¼ C

D

 !
ð31Þ
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where,

XN
i¼1

A2
XN
i¼1

AB

XN
i¼1

AB
XN
i¼1

B2

0
BBBB@

1
CCCCA ¼

@y1
@a

@y2
@a

. . . . . .
@yN�1

@a
@yN
@a

@y1
@b

@y2
@b

. . . . . .
@yN�1

@b
@yN
@b

0
BB@

1
CCA �

@y1
@a

@y1
@b

@y2
@a

@y2
@b

. . . . . . . . . . . .

@yN�1

@a
@yN�1

@b
@yN
@a

@yN
@b

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð32Þ

The procedure of Marquardt algorithm to solve parameters a, b is shown as following. (a) Ini-
tial values a0, b0 are given at first, and the corresponding initial value of squared residual Q0

was figured out. (b) Use iterative method to determine the parameter d. The initial value of d is
set to be 0.01. Then, it was substituted into the expression (31) to calculate the value of Δ1,Δ2.
The parameters a1, b1 and Q1 were obtained in the same approach mentioned above. Compare
the value Q1 with Q0, if Q1>Q0, adjust the value d to repeat the above process until Q1<Q0.
(c) Repeat to perform the above iterative process with these parameters d, Q1, a1, b1, until |
Δ1|< = ε and |Δ2|< = ε (ε = 10−6). Finally, the coefficients a, b of the kinetic model function
y = a(1-e-bx) were achieved.

Experimental Validation for the Biomolecular Interactions between
HBsAb and HBsAg
Retention of binding activity is the most important consideration when immobilizing a bio-
molecule on the Au film of SPR biosensor and can be measured by comparing the relative
binding responses recorded as RU. (a) Immobilizing the HBsAb on the surface plasmon reso-
nance sensor surface, then the PBS (pH 7.4) was used to clean the sensor surface in order to
obtain a highly stable response baseline. (b) Flowing of sample solution of HBsAg diluted to
100-fold through the microfludic cell (estimated concentration 16ng�mL-1), and monitoring
the binding of HBsAg to immobilized HBsAb on the Au film deposited on the SPR biosensor,
it causes a modification of the refractive index at the surface and results a change of the reso-
nant angle. After a certain reaction time, an equilibrium plateau was reached, where there are
no changes of signals produced with time. We injected the PBS to the microfludic cell to block
the association of HBsAg-HBsAb compounds. At this time, the association between HBsAg
and HBsAb was not existed, so the concentration of HBsAg was 0. (c) The HCL (pH 3.0) solu-
tion was used to remove all the HBsAg molecules to regenerate the SPR biosensor. Then, the
buffer solution PBS was injected to restore the baseline again and a new cycle was beginning.

Results and Analysis
The parameters and the initial values can be set manually according to the experimental data
in the SPR biomolecular interaction analysis software based on the Marquardt algorithm,
which was designed by our research group. Different results from various initial values can be
compared each other visually so that we can select the most ideal initial values to reduce errors.
From the homemade SPR analysis software, the experimental data can be imported conve-
niently. The x-axis of the graph represents time (s), while the y-axis of the graph represents the
signal responses indicated with RU, which was computed based on the following formula RU =
(1.334-RIx) ×30000, where 1.334 was the refractive index of deionized water. RIx is the refrac-
tive index of an unknown sample, which can be measured by using the SPR biosensor in real-
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time and 30,000 is a pre-determined factor for increasing the sensitivity of the calculated
responses [22]. The initial time was set to be 250s, and the time of association phase and disso-
ciation phase were 251s and 38s. Fig 1 is the response curve for the sequential injection of
HBsAg solution, indicating the association phase and dissociation phase of HBsAg and
HBsAb. The dotted lines mark the injection of the HBsAg solution with RU (response unit)
values.

The curve-fitting obtained from using both Newton Iteration algorithm and Marquardt
algorithm was shown in Fig 2.

In sub-figures of Fig 2, the dotted lines represent the original data collected from the data
acquisition system of this homemade bioanalyzer designed by using the homemade SPR bioa-
nalyzer [22], while the solid lines represent the nonlinear curve-fitting to match the affinity
kinetic model. From Fig 2, the following conclusions can be obtained: (1) The fitting results
obtained from the Newton Iteration algorithm is divergent to some non-proper initial values
(Fig 2A and 2B). However, Marquardt algorithm can avoid this problem effectively; (2) In the
same initial conditions, the results obtained from the Marquardt algorithm had much better
than the results obtained from the Newton iteration algorithm (Fig 2C and 2D).

In this experiment, the introductions of damping coefficient in Marquardt algorithm can
real-time amend the increments of parameters so that the possibility of divergence is greatly
reduced. The experimental data was obtained from HBsAg biomolecules with concentration of
16ng�mL-1. The curve-fitting is shown in sub-Figured in Fig 2 and the a = 3358.23246,
b = 0.01188 in the association phase, a = 3358.73684, m = -0.00073 in the dissociation phase
were obtained, respectively. Hence, the Rmax, ka, kd KA, and KD are estimated according to the
data narrated above (See Table 1).

Fig 1. Sensorgram showing the association and dissociation processes of biomolecular interaction between HBsAg and HbsAb. The data marked
with a triangle is obtained in the average of more than three sets of measurement results in RU. This sensorgram is showing that the HBsAg was binding on
the specific HBsAb (association phase) starting from the injection point a and reaches an equilibrium after approximately 251s. From the dissociation starting
point b, the dissociation phase was formed sequentially. The microfludic cell of this SPR bioanalyzer was kept at a constant temperature of 37°C.

doi:10.1371/journal.pone.0132098.g001
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Conclusions
Surface plasmon resonance biosensors are important tools in characterizing biomolecular
interactions as well as understanding the biomolecular recognition membrane established on
the surface of the Au film of the SPR biosensor. A number of applications using SPR biosensors
have been found in food safety, environmental pollutants and life science, which were related
to the experimental design and the calculation of kinetic constants involving the biomolecular
interaction process between antigen and antibody or receptors and ligand. To understand
clearly the interaction process, we confirms that the data does indeed obey the pseudo-first-
order binding interaction model and validates the extracted kinetic and affinity constants. This
article has established an approach based on Marquardt algorithm for the analysis of the bio-
molecular interaction using an optical surface plasmon resonance biosensor. The Marquardt

Fig 2. The fitting results obtained from both Newton Iteration algorithm and Marquardt algorithm. The data marked with a triangle is obtained in the
average of more than three sets of measurement results in RU, and the fitted curve was marked with a solid line. A. The curve-fitting using the Newton
Iteration algorithm with the initial value of 0.0095, B. The curve-fitting using the Newton Iteration algorithm with the initial value of 0.011, C. The curve-fitting
using the Marquardt algorithm with the initial value of 0.0095, D. The curve-fitting using the Marquardt algorithm with the initial value of 0.011.

doi:10.1371/journal.pone.0132098.g002

Table 1. Kinetic constants of molecular interaction between HBsAg and HBsAb.

Fitting curves Kinetic models Kinetic constants

Association
process

RU ¼ LReqð1� e�kobtÞ LReq = 3358.232, kob = 0.01188 s-1, Rmax = 3559.486, CL = 16
ng� mL-1

Dissociation
process

RU ¼ LReqe
�kd ðt2�t1Þ kd = 0.00073 s-1, KD = 1.0475×10−9 g�mL-1, ka = 6.969×105

mL�g-1�s-1, KA = 9.5466×108 mL�g-1

doi:10.1371/journal.pone.0132098.t001
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algorithm was addressed experimentally to provide better understanding the results compared
to the Newton iteration algorithm with reducing the possibility of divergence when the curve
fitting was established. A global fitting of the dissociation rate constant (kd) was performed
firstly. The next global fitting with ka and Rmax (fixed kd as a constant) was sequential
obtained. The association and dissociation rate constants ka and kd were 6.969×10

5 mL�g-1�s-1
and 0.00073 s-1, giving an affinity constant (KD) of 1.0475×10

−9 g�mL-1 from the HBsAg with
concentration of 16ng�mL-1, respectively. With the careful curve-fitting, surface plasmon reso-
nance biosensors may be applied to provide accurate kinetic constants.
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