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Abstract: Remote sensing (RS) techniques offer advantages over other methods for measuring soil
properties, including large-scale coverage, a non-destructive nature, temporal monitoring, multispec-
tral capabilities, and rapid data acquisition. This review highlights the different detection methods,
types, parts, and applications of RS techniques in soil measurements, as well as the advantages and
disadvantages of the measurements of soil properties. The choice of the methods depends on the
specific requirements of the soil measurements task because it is important to consider the advantages
and limitations of each method, as well as the specific context and objective of the soil measurements,
to determine the most suitable RS technique. This paper follows a well-structured arrangement after
investigating the existing literature to ensure a well-organized, coherent review and covers all the
essential aspects related to studying the advancement of using RS in the measurements of soil proper-
ties. While several remote sensing methods are available, this review suggests spectral reflectance,
which entails satellite remote sensing and other tools based on its global coverage, high spatial
resolution, long-term monitoring capabilities, non-invasiveness, and cost effectiveness. Conclusively,
RS has improved soil property measurements using various methods, but more research is needed
for calibration, sensor fusion, artificial intelligence, validation, and machine learning applications to
enhance accuracy and applicability.

Keywords: remote sensing (RS); soil properties and variability; multispectral analysis; satellite
sensing; proximal sensing

1. Introduction

Soil is a diverse and intricate natural asset and the foundation for nearly all agricultural
production endeavors because its physiochemical properties and nutrients play essential
functions in understanding the ecosystem’s dynamics [1–3]. These factors help researchers
make informed decisions about various agricultural operations, allowing decision-makers
to make the correct choices day-to-day [4,5]. Soil measurements that involve the systematic
collection of data are essential for managing and understanding the health and quality of
the soil by providing valuable information about various soil properties, such as texture,
nutrient levels, structure, composition, pH, degradation, moisture, contamination, organic
matter content, and soil erosion [6–8]. Accurate and timely measurements of soil properties
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are crucial for making informed decisions regarding land use, crop selection, and nutrient
management [9]. However, soil measurements have been conducted via field surveys and
laboratory analysis, which can be time consuming, labor-intensive, and expensive [10,11].
Remote sensing (RS) techniques have emerged as a promising solution to address these
challenges and provide efficient and extensive soil measurement capabilities [12,13].

In the context of soil measurements, RS provides valuable information about the
spatial and temporal variations in soil properties and conditions, which involves using
satellite, ground-based, or airborne sensors to capture images and data related to soil
properties [13–17]. These sensors can detect electromagnetic radiation reflected or emit-
ted by the soil, which can then be analyzed to derive valuable information about its
properties and interpret the information to gain insights into soil conditions, assess land
degradation, manage agricultural practices, and make informed decisions for sustainable
land use [18–20]. RS data come from various sources, including satellites, aerial photog-
raphy, Global Position System (GPS), Light Detection and Ranging (LiDAR), ground-
based sensors, radar systems, crowdsourcing, social media platforms, and historical
records [5,21,22]. Each reference provides unique and valuable information that contributes
to our understanding of the Earth’s environment [23].

Remote sensing continues to evolve, and with technological advancements, we can
expect even more data sources to emerge [24,25]. This technology has become increasingly
important in modern agriculture because it provides valuable insights into crop health,
yield estimation, and soil properties such as moisture content, temperature, organic matter
content, and texture [26,27]. Multiple techniques have been employed to analyze soil, such
as multispectral analysis, thermal infrared analysis, passive microwave remote sensing,
radar remote sensing, and the fusion of multispectral and thermal infrared data [17,28,29].
While there are certain limitations to remote sensing methods for soil measurements like
the challenges in capturing soil heterogeneity, soil depth, spectral and spatial resolution,
limited accessibility, calibration, and validation requirements [8,20,30], their advantages,
including broad coverage, non-invasiveness, non-destructive, accuracy, cost effectiveness,
and repeatability, render them indispensable resources for agriculture, soil management,
and environmental monitoring [21,31,32].

RS minimizes disturbance to the soil ecosystem while providing valuable insights into
soil properties and associated vegetation dynamics, and by integrating with other geospatial
technologies (land cover, topography, climate, and hydrology), decisions regarding land
management practices and policies are adequately informed. Overall, remote sensing
has revolutionized soil measurements by providing a cost-effective, efficient, and scalable
approach to assess and manage soil health [33]. RS can revolutionize agriculture by
providing valuable information about crop health, soil conditions, water availability, and
other important factors, and it enables farmers to make informed decisions and optimize
their farming practices. Monitoring large areas efficiently and detecting potential issues
early on is crucial for ensuring food security, minimizing environmental impacts, and
promoting sustainable agriculture [34,35]. Based on this review, we show some state-of-
the-art RS techniques, data analysis, and application in agriculture, particularly in soil
measurements, via a schematic framework presented in Figure 1.

From Figure 1 above, it can be deduced that RS processes extract meaningful informa-
tion from remotely sensed data, which can be collected by sensor mounts which capture
data in different parts that will be subject to analysis either via spectral, geospatial, or
machine learning tools in each of the analysis methods. The estimation of the soil will be
carried out via data analysis based on soil texture, moisture, properties, organic content,
and nutrient status, where the soil measurements obtained can be presented in soil map-
ping or visualization or for research reports like publications or policy recommendations,
as well as for decision support systems that entail agriculture planning, environmental
management, and land use optimization [36].

For analyzing soil, various RS technologies can be used, such as satellite imagery, a
popular method that can deliver high-resolution information on temperature, vegetation



Sustainability 2023, 15, 15444 3 of 32

cover, and soil moisture [37]. Utilizing airborne sensors such as LiDAR or hyperspectral
imaging systems is another choice that can offer even more specific data on soil characteris-
tics [38]. The data collected are then used to generate precise soil property maps, which can
guide land-use planning, agricultural practices, and environmental management [15,39].
A combination of two or more RS techniques can assess the impact of climate change on
soil moisture levels or predict soil erosion risks in specific regions by incorporating various
datasets into a geographic information system (GIS) to visualize and analyze complex
spatial relationships, leading to more informed land management decisions [40,41].
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soil measurements.

Via the application of electromagnetic energy, RS determines the characteristics of a tar-
get object from a distance. RS data in soil measurements have the potential to provide broad
coverage of soil parameter information [30,42]. Instead of collecting data from individual
soil samples, remote sensing data can be used to analyze soil properties across large areas,
making them a valuable resource for agriculture, soil management, and environmental
monitoring [43,44]. The data are also highly repeatable, allowing changes in soil proper-
ties to be detected over time [45,46]. For the advancement of seasonal crop development
patterns, changes in soil surface moisture, texture, mineral composition, organic carbon,
and other characteristics can be monitored on a regional scale from week to week [47–49].
However, further studies are required to advance remote sensing techniques for measuring
soil properties, including calibration and validation, sensor fusion, machine learning, and
artificial intelligence applications. Addressing these research gaps can improve the accuracy
and applicability of RS-based soil property measurements.

Recent studies have indicated that the adoption of RS technologies holds promising
potential to transform soil measurement practices by offering comprehensive, scalable,
and cost-effective solutions [50,51]. This review paper delves into the RS technique’s latest
advancements and applications in soil measurements. By analyzing the capabilities and
limitations of remote sensing platforms, spectral and spatial analysis methods, temporal
monitoring, and integration with other datasets, this paper aims to inspire the use of remote
sensing in soil measurement applications. Ultimately, these innovations can contribute to
sustainable land management practices, elevate agricultural productivity, and facilitate
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informed decision making for environmental conservation. This review paper will explore
the remote sensing methodologies employed for soil measurements, including active and
passive sensing techniques. Active systems such as radar, LiDAR, and ground-penetrating
radar emit signals and record the response to detect soil properties. On the other hand,
passive systems rely on the measurements of reflected or emitted electromagnetic radiation
from the soil surface to infer soil properties [52,53]. Furthermore, this review paper aims at
the following:

• Highlighting the different detection methods, types, parts, and applications of RS
techniques in soil measurements;

• Analyzing the advantages and disadvantages of the measurements of soil properties;
• Elucidating the advancements in data processing techniques and approaches used to

analyze remote sensing data for soil measurement applications;
• Exploring the potential of RS for precision agriculture and site-specific soil manage-

ment. Monitoring soil variability at high resolution and in real-time allows for targeted
interventions, optimized resource allocation, adequate yields, enhanced environmental
sustainability, and minimized inputs;

• Providing a deep understanding of the advancements in RS for soil measurement application;
• Synthesizing the latest research, methodologies, and applications to adequately update

harnessing the power of RS for soil resource management, environmental monitoring,
and agricultural sustainability.

A thorough investigation of relevant papers was undertaken to assess the existing
literature on the advancing RS measurements of soil properties. To ensure a well-organized,
coherent, and comprehensive coverage of all the essential aspects related to studying the
advancement of using RS in the measurement of soil properties, this paper follows a well-
structured arrangement. Section 1 covers background information on soil measurements,
their importance, traditional methods, RS and its applications in various fields, and the
importance of measuring soil properties for agricultural purposes; it highlights the major
contributions to the review. Section 2 addresses the overview and explanation of the RS
methods, types, parts, and key soil properties with various RS applications. The advances,
case studies, and applications of RS for soil properties and future trends are discussed
in detail. Section 5 highlights the advantages and limitations of RS methods over other
measurement methods for soil properties. Substantive conclusions, recommendations, and
suggestions for further studies are also provided.

2. Remote Sensing Methods for Soil Measurements

In agriculture, RS methods are increasingly used to gather data on crop health, soil
moisture, erosion, and soil characteristics across large areas [54]. These techniques utilize
various sensors and platforms to collect data from a distance, allowing for the large-scale,
accurate, fast, and non-destructive analysis of soil characteristics [26]. The sections dis-
cuss the overview and explanation of remote sensing methods for soil analysis (spectral
reflectance analysis, thermal infrared imaging, and radar remote sensing), key soil mon-
itoring (e.g., moisture contents, organic matter, texture, fertility, and temperature) with
various RS applications, as well as the RS parts used in soil monitoring. The utilization of
technology in understanding the environment is truly unique and empowers us to make
well-informed decisions [55–57].

2.1. Remote Sensing Methods in Soil Measurements
2.1.1. Spectral Reflectance Analysis

Spectral reflectance analysis is one of the most widely used RS techniques for soil
property assessment [58]. It involves measuring the reflectance of electromagnetic radia-
tion across different wavelengths, typically in the visible and near-infrared regions [59].
Different soil properties exhibit unique spectral signatures, allowing for their identification
and quantification. The reflectance patterns observed in different wavelength ranges can
provide information about various soil properties [60]. For example, the visible range
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(400–700 nm) can indicate the presence of organic matter and iron oxide minerals. Near-
infrared reflectance (700–1300 nm) is sensitive to soil moisture content and clay mineralogy.
Shortwave infrared reflectance (1300–2500 nm) can be used to estimate soil organic carbon
content and identify specific minerals like gypsum or calcite [61].

2.1.2. Thermal Infrared Imaging

Thermal infrared imaging is another remote sensing method for assessing soil prop-
erties. It involves measuring the emitted thermal radiation from the Earth’s surface in
the longwave infrared region (8–14 µm) [62]. Soil temperature is strongly influenced by
moisture, texture, and organic matter content. By analyzing thermal infrared images, it
is possible to estimate soil moisture levels and identify areas with variations in water
availability [16]. Thermal infrared imaging can also detect variations in soil compaction
and fertility. Compacted soils have lower porosity, reducing water infiltration rates and
increasing surface temperatures [63]. By analyzing thermal patterns, it is possible to identify
areas of soil compaction and assess their impact on plant growth.

2.1.3. Radar Remote Sensing

Radar remote sensing utilizes microwave signals to assess soil properties [64]. Mi-
crowaves can penetrate the soil surface, allowing for the measurement of subsurface
characteristics. Radar sensors use electromagnetic waves to move down the soil, which
can provide updates about moisture content and texture [65]. Radar sensors can provide
information about soil moisture content, surface roughness, and texture with microwave
signals interacting differently with different soil properties. By measuring the backscattered
radar signal, which, when wet, has a higher dielectric constant, resulting in increased signal
attenuation, it is possible to estimate soil moisture content [66]. Surface roughness can also
be assessed using radar remote sensing, as rougher surfaces scatter more microwave energy.
Soil texture, which refers to the relative proportions of sand, silt, and clay particles, can
also be estimated using radar remote sensing. Different soil textures exhibit distinct radar
backscatter responses due to variations in surface roughness and dielectric properties [67].

2.2. Remote Sensing Parts in Soil Measurements

RS techniques have significantly advanced in soil measurements using satellite, air-
borne, and ground-based methods for measuring soil erosion, identifying areas with high
soil moisture content, and mapping soil nutrients [68]. It is also helpful in detecting soil
contamination and evaluating soil fertility [69]. Figure 2 gives a thorough overview and
stages of RS methods for soil analysis (spectral reflectance analysis, thermal infrared imag-
ing, and radar remote sensing); tools for soil monitoring (e.g., LiDAR, hyperspectral, visible
infrared, scanners, cameras, etc.) with various RS applications, as well as the RS parts used
in soil monitoring.

RS is particularly beneficial in areas where soil samples are scarce or traditional
sampling methods are impractical due to the terrain [70]. Furthermore, RS can provide
data at various scales, ranging from individual fields to entire watersheds, facilitating a
more extensive comprehension of soil variability. Remote sensors can offer high-resolution
data across broad areas, mapping soil parameters such as organic carbon concentration
and moisture content [71]. Hyperspectral RS has proven effective in accurately mapping
soil properties and detecting erosion [72]. With the changes in land cover patterns, RS
can identify erosion-prone areas and help implement soil conservation measures and
land management strategies. However, in the case of an unmanned aerial vehicle (UAV)
camera observing at nadir, the view zenith angle (VZA) was specified as 0◦, as depicted in
Figure 3. The VZA will move the sensor to the leading solar plane if the results are positive.
Conversely, negative numbers indicate that the VZA is moving backward, with the sensor
pointing away from the sun.
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Figure 3. Basic concept of remote sensing (a) Multi-angle remote sensing data acquisition processes
(b) View zenith angle (VZA) time series reflect data.

On the upper left of the diagram, color bars beneath the UAV depict the four types
of remotely sensed data. The data type directs scientists to the relevant data products,
indicated by the circles on the right-hand side. The data output items are grouped based
on their estimated delivery time. Some crucial measures rely on picture indices and do
not require multiple image calibrations. The white circles on the left side of the diagram
indicate data acquired at significant field sites for this inquiry. After spectral retrieval,
additional analysis can be performed. The algorithms on the lower right require geographic
information system (GIS) inputs to geolocate and register the picture to ground coordinates,
which explores the extent to which geographic registration is possible in real time [73].
The schematic picture in Figure 4a indicates the process by which the satellite acquires a
network via the UAV, which receives signals and acquires data from the field (agricultural
field—soil and air) and reflects the base station where data is processed and transferred via
the internet for interpretation and analysis (relevant data extraction, data consensus), and
finally transmits data to the UAV for application to soil monitoring.
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Figure 4b illustrates a wireless sensor network system with multiple nodes. Each node
comprises a soil moisture sensor to monitor water level, a soil temperature sensor, and
air temperature and humidity sensors. In conclusion, RS methods offer valuable tools for
assessing and monitoring soil properties. Spectral reflectance analysis provides insights into
soil characteristics based on their unique spectral signatures. Thermal infrared imaging allows
for estimates of soil moisture content, compaction levels, and fertility variations. Radar remote
sensing enables the assessment of soil moisture content, surface roughness, and texture. These
techniques contribute to a better understanding of soil dynamics and support informed
decision-making in agriculture, land management, and environmental studies.

2.3. Remote Sensing Application in Soil Measurements

RS has emerged as a powerful tool for studying various soil properties, and its applica-
tions range from estimating soil moisture content and monitoring soil erosion to mapping
soil organic carbon content and assessing soil salinity levels [5]. It involves acquiring of data
from a distance, typically using satellite or airborne sensors, to gather information about
soil properties [74]. These data can then be analyzed to extract meaningful insights about
soil properties and their applications (Table 1). The applications of RS to soil properties are
diverse and encompass several important aspects of soil science. For example, near-infrared
reflectance can estimate vegetation cover and biomass production, while thermal infrared
measurements can measure soil moisture content. By combining data from multiple wave-
lengths or sensors, we can better understand soil characteristics and their interactions with
the environment [75,76]. It should be noted that by providing valuable insights into these soil
properties, remote sensing contributes significantly to sustainable land management practices,
agricultural productivity, and environmental conservation efforts.
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Table 1. Comparison of different remote sensing applications for soil measurements.

Soil Property Remote Sensing
Methods Descriptions References

Soil Reflectance
Optical and

multispectral
imaging

• Method/Advantage: Non-destructive from different wavelength or
spectral bands; rapid

• Aims: Assessing soil properties (soil health and fertility) over
large areas

• Findings: Analyzing the reflectance patterns obtained to gain insights
into various aspects of soil fertility and health.

[77]

Soil Albedo
Optical and

multispectral
imaging

• Method/Advantage: Effective capturing of images; non-destructive
and non-contact

• Aim: Soil surface at different wavelengths and analyzing the
reflectance values obtained.

• Findings: Detect subtle differences in soil composition and land cover
changes and evaluate land management practices

[78]

Spectral
Signatures

Spectral analysis,
hyperspectral

imaging

• Method/Advantage: Efficiency, reliability, and accurately
capturing images

• Aim: Analyzing the reflectance pattern in spectral signatures
• Finding: Identifying specific wavelengths or spectral bands that are

most sensitive to soil properties and composition

[79]

Spectral Indices
Spectral analysis,

multispectral
imaging

• Method/Advantage: Wide coverage and accurate
• Aim: To measure the intensity of electromagnetic radiation at

each wavelength
• Finding: Collecting data that capture reflectance or emission spectra

across a wide range of wavelengths

[80]

Soil Temperature
Thermal infrared
imaging, thermal

sensors

• Method/Advantage: Non-invasive, non-destructive, high accuracy
and resolution, real-time monitoring, passive and multispectral
imaging

• Amis: Monitoring temporal changes in soil temperature
• Findings: Capture reflectance or emission spectra across a wide range

of wavelengths

[81]

Soil Moisture Microwave RS,
Thermal sensors

• Method/Advantage: All-weather capability, penetration depth,
surface roughness sensitivity, vegetation penetration

• Aim: Monitoring of soil moisture content
• Findings: Interact and penetrate differently with soil depending on its

moisture content, texture, and structure

[52]

Soil Roughness Microwave remote
sensing, LiDAR

• Method/Advantage: High accuracy, non-invasive, cost effective, high
resolution, multispectral capabilities

• Aim: Determining the soil properties data and reflected signals
• Finding: Soil factors like topography, surface roughness, and

vegetation height are determined

[43]

Soil Electrical
Conductivity

(EC)

Geophysical
methods (EM,

GPR)

• Method/Advantage: Real-time monitoring, rapid, multi-parameter
assessment, integration with other data sources

• Aim: Electromagnetic infrared for sensing soil surface
• Finding: Obtaining detailed soil moisture and salinity maps by

scanning the soil surface with EMI sensors

[82]
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Table 1. Cont.

Soil Property Remote Sensing
Methods Descriptions References

Soil Permeability Geophysical
methods (GPR)

• Method/Advantage: Non-destructive, high-resolution, cost-effective,
rapid, and non-invasive approach

• Aim: Using different physical principles to analyze the properties of
the soil

• Finding: Improved the understanding and management of soil
permeability by allowing for repeated measurements without
disturbing the soil

[40]

Soil Composition
Multispectral and

hyperspectral
imaging

• Method/Advantage: Enhanced spectral and spatial resolution,
non-destructive, rapid data acquisition.

• Aim: Measurement and application of RS in soil properties
• Finding: Soil compositions like soil mineral composition, organic

carbon content, and soil contamination are determined

[83]

Vegetation Cover
Multispectral and

hyperspectral
imaging

• Method/Advantage: Improved spectral and spatial resolutions,
non-destructive, non-invasion, allow for temporal monitoring
quantitative measurement

• Aim: Analyzing the reflected or emitted radiation from vegetation
• Finding: Accurate information about vegetation cover dynamic

[33]

Soil Topography LiDAR

• Method/Advantage: High-resolution, wide coverage, rapid, high
accuracy and repeatability

• Aim: Studying soil erosion, landform characterization, and
topographic changes with LiDAR

• Finding: Estimate vegetation height, canopy structure, managing soil
ecosystem, and influence organic matter accumulation

[38]

Soil Surface
Characteristics Radar imaging

• Method/Advantage: Wide area coverage, all-weather capability, high
spatial resolution, and non-destructive

• Aim: Soil surface characterization
• Finding: For sustainable land management and environmental

planning via soil surface characterization

[39]

Change
Detection

Multi-temporal
analysis, radar,
optical imagery

• Method/Advantage: High accuracy, reliability, wide area coverage,
non-invasive, flexibility, repeatability, and non-linear
change detection

• Aim: Estimation of soil moisture content and surface roughness
• Finding: Detect the changes in underground features like bedrock or

water tables

[84]

Data Fusion and
Integration

Integrating
multiple remote

sensing data

• Method/Advantage: Improved spatial resolution, accuracy,
reliability, and broad coverage

• Aim: Combination of datasets from different sensors or platforms
• Finding: Overcoming the limitations associated with individual

sensors, such as limited spatial coverage or spectral resolution

[56]
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Table 1. Cont.

Soil Property Remote Sensing
Methods Descriptions References

Soil pH
Thermal infrared
imaging, thermal

sensors

• Method/Advantage: Rapid, non-destructive, spatially explicit,
cost-effective, and non-contact measurement

• Aim: Estimation of soil pH with thermal infrared imaging
• Finding: Nutrient availability and microbial activity in the soil can

be detected

[15]

In Table 1, the comparison of different RS methods used in soil measurements was
examined and discussed, which covers several soil properties and describes the RS meth-
ods involved in the measurements. RS has shown valuable skill in monitoring daily or
temporary soil characteristics, which change with time based on factors such as time of
day, weather, season, and climate. Table 1 further shows that RS applications for soil
measurements significantly advanced our understanding and offer valuable insight into
soil processes, properties, erosion, moisture content, fertility, and other crucial factors
influencing agricultural productivity and environmental management, such as spectral
reflectance analysis, thermal infrared imaging, LiDAR, and hyperspectral imaging, which
are critical techniques used in this field. Each technique has its strengths and limitations,
and their selection depends on the study’s specific objectives and the desired level of detail
required for soil analysis.

RS technology is a cost-effective and efficient tool for soil monitoring. It helps sci-
entists and policymakers make informed decisions about agricultural practices, land use
planning, and environmental conservation. Soil characteristics can be accurately detected
and monitored via laboratory analysis and real-time measurements [55,56]. Due to the
increasing demand for information, spectral responses can be utilized to evaluate surface
and subsurface soil properties, but soil property monitoring techniques need updating [57].
Nevertheless, the benefits of remote sensing data in soil measurements far outweigh the
limitations, making it an indispensable tool for soil scientists and environmental man-
agers [45].

2.4. Remote Sensing Techniques in Soil Measurements

Remote sensing (RS) tools encompass many technologies and techniques that enable
us to gather valuable data about the soil from a distance. Satellite-based tools offer global
coverage and continuous monitoring capabilities (equipped with sensors that capture data
in different wavelengths of the electromagnetic spectrum, including visible, infrared, and
microwave) but have limitations regarding spatial resolution and cloud cover interference.
In contrast, aerial-based tools provide higher spatial resolution for detailed mapping and
monitoring of smaller areas but are limited by flight restrictions and higher costs (Table 2).
Ground-based devices offer high-resolution data at close range and can provide detailed
information about specific areas or objects of interest. Each type of remote sensing tool
has its advantages and limitations, making them suitable for different applications and
research needs.

Based on Table 2 above, various remote sensing tools offer distinct benefits for mea-
suring soil, as satellite-based remote sensing can provide global coverage and long-term
monitoring but may not offer a detailed spatial resolution. On the other hand, airborne re-
mote sensing provides higher spatial resolution and more detailed information but requires
specialized equipment and is more expensive. Ground-based remote sensing tools offer
direct measurements at close range with high spatial resolution but have a limited coverage
area. Lidar remote sensing can give detailed information about topography and vegetation
structure but comes with cost considerations. Ultimately, selecting the most suitable remote
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sensing tool will depend on the specific study objectives, the scale of analysis, and available
resources.

RS techniques such as thermal, radar, hyperspectral, and optical sensors are used for
soil analysis to detect the characteristics of objects and materials from a distance during soil
property measurement [21,95]. Most detection modes depend on photons tested at their
related electromagnetic (EM) frequency [96] because the frequency and force of energy
reflected or transmitted by the highlights in the scene being detected are usually identified
and recorded by distant sensors. It should be noted that the electromagnetic radiation
spectrum (EMR) comprises particles that travel in waves, and visible light is the most
visible form of electromagnetic magnetic radiation.

Table 2. Comparison of different remote sensing tools in soil measurements.

Remote Sensing Tools Advantages Disadvantages References

Satellite Imagery

Provides wide coverage, regular data
capture, multispectral and

hyperspectral capabilities for detailed
analysis

Limited spatial resolution and
control over data acquisition [37,85]

Unmanned Aerial Vehicles
(UAVs) and Drones

High-resolution imagery, offering
flexibility in flight paths, cost effective

for small-scale projects, and data
acquisition timing

Limited coverage area and
regulatory restrictions on flight

altitude
[38,50,86,87]

LiDAR (Light Detection and
Ranging)

Comprehensive data on topography,
vegetation structure, canopy height

high-resolution, 3D mapping
capabilities and can penetrate

vegetation cover

Expensive and limited penetration
capabilities [88,89]

Thermal Imaging

Non-destructive, continuous
monitoring measures soil
temperature and moisture,

identifying water stress and irrigation
needs

Requires clear sky conditions for
accurate temperature and limited to
surface soil temperature monitoring

[81,90]

Soil Moisture Sensors

Accurate monitoring, directly
measuring soil moisture content at

different depths, providing real-time
data and integration for continuous

monitoring

Limited coverage area and requires
physical installation in the soil [57]

Hyperspectral imaging

High spectral resolution, improved
detection, classification capabilities,

enhanced data analysis,
non-destructive and non-contact

Limited spatial coverage, high data
processing, complexity, costly,

limited availability and accessibility
[33,38,79]

Ground-based remote sensing

High spatial resolution, real-time data
collection, efficiency, and direct
measures reflectance at different

wavelengths to estimate soil
composition and nutrient contents

Physical access to the soil surface
can be challenging in certain

terrains or land uses
[52,69]

Radar system

Versatility, all-weather capability,
depth perception, high resolution,
large-scale coverage, long-distance
capability, and ability to combine

multiple radar measurements

Limited resolution, complexity, cost,
limited spectral information, and

interference
[69]

Infrared (IR) sensors
Non-contact, versatile application,

fast and real-time data, wide
coverage and high accuracy

Limited depth perception,
influenced by environmental
factors, limited penetration

capability, cost, and limited spectral
resolution

[90,91]
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Table 2. Cont.

Remote Sensing Tools Advantages Disadvantages References

Optical sensors
High spatial resolution, multispectral
capabilities, wide coverage, long-term

data collection, and cost effective

Susceptibility to weather conditions,
limited visibility, temporal

resolution, limited data processing,
and interpretation

[78,92–94]

Aerial Photography High spatial resolution, flexibility,
and rapid deployment

Limited coverage, weather
dependency, and higher cost [31]

Microwaves

Mapping vegetation, all-day
operation, reliability, effectiveness,

and obtaining data in adverse
weather conditions

Lower spatial resolution, limited
spectral information, reliance on

active sensors, complex data
interpretation, and limited

availability of free data

[64,72]

It is worth noting that mechanical sensors measuring soil penetration resistance are
often used and combined with other sensors [42,97,98]. This is demonstrated in various
studies on remote sensor measurements, as shown in Table 3, whose applications range
from soil compaction assessment [99] to 3D modeling of soil layers.

Table 3. Reviewed studies on remote sensors for measuring soil and related properties.

RS Method

Remote Sensor for
Measuring Soil

and Related
Properties

Investigated Parameters Applications Highlights References

Hyperspectral
Imaging

Apparent Electrical
Conductivity (ECa)

(two sensors)

Cation exchange capacity;
organic carbon; electrical

conductivity; Depth to argillic
horizon

The ECa of the two sensors
should be compared. It is

necessary to estimate a
variety of soil properties.

The study improved soil properties
estimation by combining ECa

sensor fusion and data from various
fields, with the highest R2 predicted
for the depth to the argillic horizon.

[99]

Reflectance
Spectroscopy ECa; Crop yield

pH; Calcium carbonate,
elevation; stream power index;
slope; organic carbon, wetness
index; particle size distribution

To create a map of various
soil properties and crop

yield estimation, and
determine variables for

delineation management

The study found ECa was
positively correlated with clay and

negatively correlated with sand
content, indicating field

discrepancy. Landscape location
and soil moisture were linked to

management zones, and crop yields
varied by management zone

[100,101]

Airborne LiDAR ECa (two sensors

Sodium; Calcium, Potassium;
Magnesium; Sulphur;

Nitrogen; Phosphorus; cation
exchange capacity; particle size

distribution
soil pH; soluble salts (implied)

Determine the relationship
between ECa and several

soil characteristics

ECa was predicted in six research
locations using clay content, silt

content, soluble salts, Na, Ca, Mg,
and CEC, with strong correlations
with clay content and Mg in four

fields

[102]

Electrochemical
Sensor

Visible-Near
Infrared spectra;

ECa

Organic Carbon; Electrical
Conductivity;

Carbon-to-Nitrogen ratio;
Particle size distribution; Soil

pH

Multiple soil qualities were
estimated

With an R2 of 9.3 × 10−3,
Visible/near-infrared spectra alone,

ECa alone, and sensor fusion
collectively produced the best soil

property estimates

[85,103]

Electrochemical
Sensor

Crop yield, Total
carbon, Mechanical

resistance;
Capacitance probe;

output
voltage;

Cone index

Bulk density, Organic matter;
Clay content

Multiple soil properties were
estimated and mapped.

Crop yield mapping

The study estimated sand content,
silt, and clay content with the

highest R2 (0.90) at 0 to 28 cm from
R, and found similar patterns in

bulk density, mechanical resistance,
and organic matter on crop yield

maps

[104]

The platform’s altitude, the image’s spatial resolution, and the reduced return fre-
quency for arranged sensors are the distinguishing factors for these platforms and imaging
systems [105]. Calculating different soil properties can be a valuable tool for farmers,
gardeners, and others who work with soil [106]. When analyzing temporal patterns in
soil and plant properties, the frequency of data collection is a crucial factor to consider.
However, it is essential to note that cloud cover can affect RS images from satellites and
aerial platforms, although it has a more negligible impact on ground-based remote sens-
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ing [107]. Utilizing RS is an effective method for evaluating the surface characteristics
of the ground from afar. This technique assesses the chemical and physical properties
of the soil matrix by measuring the upwelling electromagnetic radiation emitted or re-
flected from the soil [108]. With the information obtained via RS, we can distinguish
differences between soil extrapolate characteristics and the soil surfaces from the radiation
observed. RS technologies are widely acknowledged for providing a valuable tool for
obtaining geographically and chronologically diverse information to assess soil properties
accurately [109]. To account for geographically varying crop responses, information on soil
variability may need to be coupled with plant information in both scenarios to improve
in-season fertilization [21,31,32]. Understanding how things change over time is made
more accessible by analyzing spatiotemporal changes. High-resolution tracking of spectral
and spatial data changes is possible with the aid of RS. It can gain an understanding of
how our environment changes because of its capacity to observe and track changes in great
detail over time [110].

3. Data Sources and Platforms Used in Soil Measurements

Remote sensing data is collected from various sources, including satellite data providers,
government agencies, and open-access datasets. These sources provide valuable information
for various applications, such as environmental monitoring, disaster management, urban
planning, and agriculture [111].

Satellite data providers are private companies that own and operate satellites equipped
with sensors capable of capturing images and other data about the Earth’s surface [112].
They carry sensors and cameras that capture images and data from space. These sophisti-
cated instruments collect information at different wavelengths, allowing scientists to study
various aspects of the Earth’s environment [113]. Satellites provide a global perspective,
covering large areas and collecting data regularly, making them invaluable for monitor-
ing long-term trends, such as climate change [114,115]. Some well-known satellite data
providers include DigitalGlobe (now part of Maxar Technologies), Airbus Defense and
Space, Planet Labs, and GeoIQ [116–118]. These companies offer high-resolution imagery
with varying spatial and temporal resolutions to meet user requirements [119]. They often
provide commercial services to industries like defense, agriculture, energy, and infrastruc-
ture development, and they heavily rely on the commercial services provided by these
companies to enhance their operations and decision-making processes.

Government agencies also contribute significantly to remote sensing data by operating
satellites or partnering with satellite data providers [120,121]. RS companies provide high-
quality imagery that caters to the diverse needs of users with a wide range of spatial and
temporal resolutions, allowing them to meet specific requirements [27,122]. They operate
satellites or collaborate with data providers to gather valuable information [120,121]. For
instance, NASA (National Aeronautics and Space Administration) in the United States
operates several Earth-observing satellites, including Landsat and EOSDIS (Earth Observ-
ing System Data Gateway), which have revolutionized our understanding of the Earth’s
dynamics and environmental changes and are regulated by the USGS (United States Geo-
logical Survey) [123,124]. In addition to its role as a satellite data provider, ESA (European
Space Agency) provides free access to various datasets, including the Sentinel missions,
via the ESA Data Dissemination Service (EDDS) [125–127]. GEE (Google Earth Engine)
combines data from multiple sources, including Landsat, Sentinel, and other missions,
allowing users to analyze and visualize remote sensing data using Google’s computational
infrastructure [121,128].

Satellite-Based Platform as Data Sources in Soil Measurements

Satellite-based platforms have gained popularity for soil measurements because they
frequently cover large areas and revisit them [129]. These platforms use multispectral
sensors that capture data across the electromagnetic spectrum, making it possible to analyze
different soil properties [130]. The platform for soil measurements that operates via satellite
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relies on the Landsat program, a joint effort between NASA and the USGS [131]. The
satellites used in this program come equipped with advanced sensors like the Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS) [113,132]. These sensors can
effectively capture data across various spectral bands, including visible, near-infrared,
shortwave, and thermal infrared [111,133]. Researchers can accurately determine essential
soil properties by analyzing the reflectance values within these different bands [111,133].

The ESA’s Sentinel program is a widely used satellite-based platform that features
the advanced capabilities of the Sentinel-2 satellites. These satellites have a multispectral
instrument (MSI) that captures data in 13 spectral bands, from visible to shortwave in-
frared [29,131]. The captured data can be effectively leveraged to evaluate soil properties,
such as soil moisture, vegetation indices, and land cover classification [8,134]. Soil mea-
surements can be conducted with multispectral sensors on land and in the air. In the air,
hyperspectral cameras and LiDAR systems are fitted onto airborne platforms such as un-
manned aerial vehicles (UAVs) and aircraft [87,135]. Hyperspectral cameras offer in-depth
analysis of soil parameters [136]. LiDAR systems, on the other hand, use laser pulses to
gauge the distance between the sensor and the ground, yielding valuable information on
topography and soil roughness [22].

4. Advances and Case Studies of Remote Sensing Technologies Applications in
Soil Measurements

Despite being a challenging task, determining soil quality is essential to environmental
monitoring, particularly at the local and regional levels. Accurate soil evaluation is essential
to managing soil properties effectively and ensuring sustainability, so it is exciting to see
agricultural innovation in this area [137,138]. Understanding the unique characteristics
of the soil allows farmers to make tactical decisions at every stage of plant development.
An essential step in determining the nutrient content of the soil is soil analysis, followed
by targeted treatments to ensure the best possible plant growth [139–141]. By measuring
soil properties with RS, we can confidently assist farmers worldwide in achieving their
objectives for sustainable agriculture [142].

The efficiency of soil measurements has dramatically increased with the introduction of
real-time and near-real-time data acquisition methods. Thanks to the latest satellite imaging
technology, images can be captured and processed within hours, allowing scientists to
monitor soil conditions instantly [141]. It is comparable to acquiring the latest soil data
on demand and accurately. Additionally, the use of machine learning algorithms has
transformed soil parameter extraction. These algorithms can automatically analyze remote
sensing data and provide insightful information about soil properties [133,143]. It is similar
to having a knowledgeable robot that effortlessly gathers data and performs complex
calculations [144].

The vegetation indices approach is another algorithm utilized for RS soil monitor-
ing [145]. This technique scrutinizes how plants reflect and absorb light at varying wave-
lengths, which can provide data on the well-being and efficiency of crops and other vege-
tation types [146]. Researchers can pinpoint variations in soil properties that may impact
plant growth and development by comparing vegetation indices for different land areas.
The examination of soil features via remote sensors necessitates the utilization of algorithms
to scrutinize the data obtained.

In addition to these remote sensor parts and methods, data collected from RS can be
combined with ground-based measurements and laboratory analysis to enhance accuracy
and reliability [147,148]. Table 4 demonstrates how other soil properties were determined
using various RS types and methods. According to these investigations, RS types and
methods may be used to examine various soil parameters.

From Table 4 above, we examined and analyzed various research publications on
the use of RS techniques to investigate various soil properties by properly identifying the
parts of the RS used for the research, the soil parameter being investigated, the research
direction (objective), and the results obtained. It is noted that each of the researchers
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adopts the sensor parts appropriate for the set-up experiment’s objective. For example,
Refs. [72,101,102,143,149,150,154–157,159,161] all adopted the use of various tools in spec-
tral reflectance due to their global coverage, high spatial resolution, long-term monitoring
capabilities, non-invasiveness, cost-effectiveness, and the fact that their objectives are to
assess soil fertility, moisture, nutrients, texture, and composition where spectral reflectance
is found suitable.

It should also be noted that when designing an agricultural system, it is essential to
incorporate sensors to monitor soil NO2− levels and environmental properties such as soil
temperature and moisture [162,163]. Improvements to the algorithm could be made via
machine learning, allowing artificial intelligence to gather and integrate empirical data
for more accurate decision-making [164,165]. Also, it should be noted that the spectral
reflectance approach is a widespread algorithm employed for RS of soil properties, which
entails analyzing the reflection of various light wavelengths from the soil surface, which
can provide details about its composition and attributes. Researchers can compare the
spectral reflectance patterns of different soils to identify dissimilarities in their properties
and employ this knowledge to establish models for anticipating soil characteristics based
on RS data. By recognizing comparable patterns, RS aids in defining the scope of problems
discovered during field scouting [166]. It tracks pest issues, weather conditions, properties,
and soil nutrient management challenges. While it took several years to develop remote
sensing technology, it could promptly provide trustworthy, cost-effective products and
services. Such services are now accessible to help farmers and their advisors make crop
management decisions.

Table 4. Case studies of various research on remote sensing technologies in soil measurements.

Soil Features Sensor Part Research Directions Results Studies

Soil Nitrogen Aerial hyperspectral
images

To examine how the treatments
and variable-rate fertilization
affected winter wheat growth

In-field variable-rate fertilization
was found to decrease winter

wheat gaps caused by soil nitrogen
content changes

[143]

Soil texture

Hyperspectral images
from space-borne

PROBA-CHRIS and
airborne MIVIS

To assess the texture of the soil,
with the performance and
limitations of each system
(such as the absence of the
SWIR band) highlighted

The algorithm was proven to be
reliable for optical atmospheric
investigations and atmospheric

correction

[149,
150]

CO2 leaks
Infrared Imaging

Spectrometer/Airborne
visible

To detect the CO2 leaks from
the soil

The use of multi-temporal
hyperspectral pictures was used to

detect vegetation stress signals,
revealing CO2 leaks from the soil.

[151]

Copper
concentration Hyperspectral

Estimating soil using
laboratory-based hyperspectral

measurements yielded
encouraging results

The study reveals that utilizing
second-order derivative spectra as

input parameters for predicting
copper concentration yields the
highest estimate accuracy with a

coefficient (R2) of 0.54

[49]

Potassium
Content Hyperspectral Imaging

To better understand soil
fertility, close-range

hyperspectral imaging was
used to quantify potassium

content in cinnamon soil

The results showed that this
approach works well when the
potassium level is high (>100

mg/kg)

[72]
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Table 4. Cont.

Soil Features Sensor Part Research Directions Results Studies

Soil property
assessment Electromagnetic Sensor

To identify and classify
different soil types based on

their spectral signatures

Spectral signatures are unique
patterns of electromagnetic

radiation emitted by specific
materials, creating maps

displaying the spatial distribution
of different soil types based on
sensor data acquisition periods

[33]

Monitoring soil
erosion

Aerial photography and
satellite imagery

To detect and quantify areas
prone to erosion

Identifying areas at risk by
analyzing changes in land cover,

vegetation density, and
topographic features, and

implementing appropriate soil
conservation measures

[85]

Soil Moisture
microwave radiometry
and thermal infrared

imaging

To determine the reflected and
electromagnetic radiation from
soil surface that is influenced

by its moisture content

By analyzing these measurements,
scientists can estimate soil

moisture levels and monitor
changes over time

Organic matter
content Optical Sensor

Assessing and monitoring
various soil properties,

compactions, and nutrient
levels

The data reveal crucial
information about organic matter
content, nutrient levels, pH, and
compaction, which significantly

impacts agricultural productivity
and ecosystem functioning

[152]

Geographical
monitoring,

forecasting, and
planning

Multispectral Remote
Sensing

Identification of bucolic and
farming zones using machine
learning to combine low- and
high-resolution multispectral

images

The anticipated method
outperformed previous fusion

algorithms in improving images
and shaping operational

evaluation of bucolic and farming
regions

[84]

Organic contents Optoelectronic Sensor

To demonstrate a 1024-pixel
flexible optoelectronic sensor

array as active materials for an
effective neuromorphic vision

system

With a responsivity of 5.1 × 107

A/W and a specific detectivity of 2
× 1016 Jones, the device displays

neuromorphic reinforcement
learning by training the sensor

array with a weak light pulse of 1
µW/cm2

[78]

Soil properties Optical sensors

To detect distinct light
reflectance frequencies in the
near-infrared, mid-infrared,

and polarized light spectrum

Optoelectronic sensors
distinguished between vegetation
and soil plant types, making them

visible in an experiment. It
determines the soil moisture

contents, OM, and clay

[92]

Soil properties Mechanical Sensor

Investigating relationship
between mechanical qualities

and soil physicochemical
parameters in croplands with

four different cultivation
durations

Increased bulk density and clay
content increased as cultivation
period increased, but SOM, Cc,
and Cr progressively declined

[153]

Soil density
testing LiDAR Sensor

To calculate the volume of a
hole instead of using sand or

water as a replacement
material

Research shows that 3D point
cloud data can replace the need for
drilling test holes and measuring

volume in soil density testing

[154]
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Table 4. Cont.

Soil Features Sensor Part Research Directions Results Studies

Soil surface and
furrows LiDAR

To compare and evaluate two
methods for measuring and
assessing the cross-sectional

area and geometry of a trailing
shoe sweep furrow

LiDAR data showed that irrigation
increased furrow cross-sectional
area in coarse sand by 11% and
34% and in loamy sand by 17%

and 15%

[102]

Soil Morphology LiDAR
Using various LiDAR systems

and analyzing data to
determine soil characteristics

LiDAR sensors generate light
waves that bounce off objects and

return to the sensor, which
calculates the distance based on
the time it takes for the waves to

return

[155]

Soil Surface LiDAR (Terrestial)

To distinguish between maize
plants and weeds on the soil
surface, a LiDAR sensor is

utilized to evaluate vegetation
based on distance and

reflection measurements

The overall discrimination success
rate using canonical discriminant

analysis (CDA) was 72.2%
[156]

Topsoil properties Airborne LiDAR
To estimate the forest topsoil
properties with the LiDAR

(Airborne) intensity

LiDAR-derived variables were
found to be reliable predictors of

four topsoil parameters with
coefficients of determination (R2)

ranging from 0.46 to 0.66

[157]

Soil
characteristics Electrochemical sensor

To evaluate soil qualities and
determine the nutrient content

of the soil

The electrochemical sensor
replaces the expensive chemical

soil testing and complex soil
nutrient monitoring by tracking

the soil pH, salt, and micro/macro
elements

[82]

Soil Quality
Assessment Electrochemical sensor

To identify cutting-edge
electrochemical sensing

technology for soil quality

The study proposes and develops
an electrochemical sensor for soil

quality detection, addressing
challenges and exploring potential

alternatives and potentials

[138]

Soil testing Electrochemical sensor

An overview is presented of
electrochemical sensors that
use potentiometry to detect

NPK levels in soil

The results show that soil testing
with electrochemical sensor is very

effective and accurately and
quickly detected for

experimentation

[158]

Soil nutrient Electrochemical sensor

A nitrate sensor that uses
electrochemical impedance

spectroscopy with ion-selective
electrode allows direct and

continuous soil nitrate
monitoring without

pre-treatment

Soil nitrate can be measured
dynamically with <20% error in a
7-day experiment using the sensor

[85]

Soil nutrients Optical Sensor methods

Test optical methods for
detecting soil nutrients with a

portable sensor that senses
nutrients in dry soil samples

without extensive preparation.

The report details different testing
methods for soil nutrients and can

be used as a reference for future
development of a portable NPK

detection sensor.

[152]

Mapping soil
properties

Gamma-ray sensor,
Electromagnetic sensor

To minimize soil collection and
monitoring duration, and

expenses and anticipate an
appropriate sensor for

estimating soil parameters

Using multiple soil sensors is the
most effective way to predict soil

properties with MLR compared to
using just one sensor

[159]
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Table 4. Cont.

Soil Features Sensor Part Research Directions Results Studies

Soil properties Gamma ray spectroscopy
Test gamma-ray spectrometer

to predict soil properties in
two sandy loam fields

In the energy-windows method,
total nitrogen had the highest

prediction accuracy (R2 = 0.75) in
the traditional field

[160]

Profile soil
properties Reflectance spectroscopy

Using multi-sensor methods to
study on-site soil

characteristics

The best model performance was
obtained by combining

preprocessing with a Gaussian
smoothing filter and PLSR

analysis. Furthermore, DECS
outperformed VNIR spectra in

estimating silt, sand, CEC, Ca, and
Mg

[101]

Soil moisture
monitoring Gamma-ray spectrometer

To determine the soil moisture
contents using gamma-ray

emission

The preliminary data suggests that
atmospheric radon concentrations

affect the sensor’s gamma flux.
Static measurements were

conducted to determine soil
moisture content changes over

time with precision

[161]

Surface soil
moisture Thermal Infrared

To provide an operational
estimation of surface soil
moisture at good spatial

resolutions

The trapezoid model accurately
replicated spatial and temporal

patterns of observed soil moisture
with a root-mean-square error of

0.06 m3m−3

[90]

Soil moisture
index Thermal Infrared Sensor

Estimate daily soil moisture
with satellite data using land
surface temperature changes

The new TIR technique is better at
obtaining soil moisture data from

satellite info in areas with clear
skies and varying cloud coverage

[81]

Soil surface
temperature Thermal Infrared Sensor

To evaluate the possibility of
infrared thermography (IRT)

sensing in a scalable
agricultural

IRT-measured SSTs and soil
temperature at 10 cm depth were
closely related. Biochar-amended
soils showed local SST variability

with lower thermal inertia

[91]

The processing of RS data has real-world applications with significant societal im-
plications [167]. For example, using remotely sensed multispectral or radar pictures for
urban surveillance, fire detection, and flood prediction has a substantial economic and
environmental effect. RS has grown into a multidisciplinary science, with machine learning
and signal processing algorithms now playing critical roles in efficiently processing col-
lected data and producing accurate results [168]. Machine learning algorithms are among
the other algorithms employed in the RS of soil properties [143]. These algorithms can be
trained to detect remote-sensing data patterns corresponding to specific soil characteris-
tics [169]. Predictive models can be formulated using these algorithms, which can then be
applied to new datasets to estimate soil properties based on RS data. Algorithms have a
crucial function in remote sensing of soil properties by enabling researchers to examine vast
amounts of intricate data and identify patterns linked to specific soil characteristics [170].

5. Discussion

RS, which stands for remote sensing, refers to collecting information about an object,
area, or phenomenon from a distance, typically using sensors on aircraft or satellites [74]. RS
techniques have significantly advanced in measuring soil properties via satellite, airborne,
and ground-based methods. These advancements have greatly enhanced our ability to
understand and manage soils for various applications such as agriculture, environmental
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monitoring, and land resource planning. After an extensive review of the RS techniques
and methods of soil properties according to their functions, applications, and parts, this
review confirmed that RS allows for data collection over large and often inaccessible
areas, providing a comprehensive view of soil properties across different landscapes. The
advancement uses hyperspectral sensors, which can detect a wide range of wavelengths of
light and provide detailed information about soil composition. However, it is noted that
traditional field-based soil measurements are time-consuming and labor-intensive. Hence,
RS enables rapid data collection over wide areas, reducing the time and effort required
for data acquisition, increasing efficiency, achieving higher gross margins, having less
environmental impact, and increasing resource use. RS always incorporates vast data from
various sources, such as information and expertise about crops, soils, the environment,
and economics [171–173]. The commonly used RS methods in soil property assessment are
examined below, with Table 5 showing the advantages, limitations, and parameters of the
RS methods.

According to the findings presented in Table 5, it can be deduced that each of the RS
methods has its advantages and limitations, indicating that soil monitoring can emerge
over a wide range, enabling more effective management of its critical resources. However,
the choice of methods depends on the specific requirements of the soil measurement task.
For example, spectral reflectance would be a suitable choice if the objective is to assess
soil fertility and composition. Radar or microwave RS would be more appropriate if the
focus is on monitoring soil moisture levels, especially in vegetated areas. Similarly, thermal
infrared imaging is beneficial for studying temperature-related soil properties and water
stress in plants. It is important to consider the advantages and limitations of each method,
as well as the specific context and objective of the soil measurements, to determine the most
suitable RS technique.

Table 5. Advantages, limitations, and parameters of remote sensing methods in soil measurements.

Methods Principles Advantages Disadvantages References

Spectral reflectance

Involves the measurements
and analysis of the

electromagnetic radiation
reflected by the Earth’s
surface across different

wavelengths.

Non-destructive nature
Wide range of information

about soil properties
Spatially explicit nature

makes it a powerful tool for
understanding soil conditions

over large areas.
Assess multiple soil

properties simultaneously

Require calibration and
validation procedures and

time consuming
Indirect measurements of soil

properties,
Result validation

Complexity of data
interpretation

Sensitive to external factors

[136,174–176]

Thermal Infrared Imaging

Tools for assessing various
soil properties that can

acquire insights into
characteristics such as

moisture content,
temperature, organic matter
content, texture, compaction,

salinity, and erosion via
evaluating the thermal

patterns and attributes of
soils.

Non-destructive and
non-contact method

Large scale resolution
High spatial resolution

Capture temporal variations
Rapid data acquisition

Potential for automation
Integration with other RS

techniques to obtain
comprehensive data

Limited depth penetration
Influence of environmental

factors
Complex data interpretation

Expensive
Limited spectral information

Dependence on weather
conditions

Lack of standardized
protocols

[29,177–179]

Radar Remote Sensing

Can be used to assess soil
moisture, soil roughness, and

soil composition. Also can
provide valuable information

about other related
parameters such as soil
moisture retention, soil

erosion, and soil compaction.

All-weather capability
Day and night operation

Penetration capability
Large area coverage
Temporal resolution

Limited spatial resolution
Complex data interpretation

Limited sensitivity to soil
properties

Cost and accessibility
Limited temporal coverage

[12,134,135]

Additionally, combining multiple methods can provide a more comprehensive under-
standing of soil properties and improve the accuracy of the measurements [33]. RS offers
numerous advantages over other methods for measuring soil properties, including large-
scale coverage, a non-destructive nature, temporal monitoring capabilities, multispectral
capabilities, and rapid data acquisition. Table 6 below enumerates the advantages and
limitations of RS techniques based on various parameters. However, it also has limitations
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related to limited vertical resolution, indirect measurements, and limited sensitivity to
certain properties. When comparing different remote sensing tools based on coverage and
data management, it is important to consider factors such as spatial resolution, temporal res-
olution, spectral coverage, and the scale of observation required. Satellite-based tools offer
global coverage but with moderate to high spatial resolutions. Aircraft-based tools provide
higher spatial resolutions but have limited coverage due to flight paths. Ground-based
tools offer high-resolution data but are limited to specific locations. Data management
requirements vary depending on the volume and complexity of the collected data.

RS also enables data collection without physically disturbing the soil, which has non-
destructive characteristics that are particularly valuable in situations where preserving the
integrity of the soil is important, such as in protected or fragile ecosystems [15]. Using
various sensors mounted on satellites or aircraft, RS can capture information about soil
properties without requiring direct contact or excavation [74]. However, RS techniques
provide information about the soil’s surface but cannot penetrate deeper layers [33]. The
depth of information retrieval depends on the sensor type and wavelength used because
some sensors can estimate soil properties at shallow depths (e.g., a few centimeters); others
may only capture surface-level characteristics [180–182]. By acquiring data at regular in-
tervals, RS allows for the identification of trends and patterns in soil properties that may
not be apparent from a single snapshot [183,184]. RS relies on indirect measurements of
soil properties based on spectral reflectance or emission patterns, which are influenced
by various factors, including vegetation cover, atmospheric conditions, and sensor cali-
bration. As a result, there can be uncertainties and errors in estimating soil properties.
Ground validation via field sampling and laboratory analysis is often necessary to calibrate
and validate remote sensing data [185,186]. RS measurements are non-destructive, in
contrast to traditional soil sampling, which can alter the soil’s characteristics and disturb
ecosystems [187].

It is essential to consider factors such as initial investment, operational costs, accuracy,
efficiency, and scalability to perform a comprehensive cost-benefit analysis of RS methods
for soil measurements. For example, satellite remote sensing boasts minimal upfront
expenses and reasonably priced data [188]. On the other hand, airborne sensing requires
a significant initial investment due to flight operations and sensor equipment costs. In
contrast, ground-based sensing requires a moderate initial investment for sensor equipment
but may have higher labor costs. Satellite remote sensing boasts lower operational costs than
airborne or ground-based methods, with the only ongoing expenses typically involving
data processing and analysis [189]. Compared to airborne RS, which entails additional
costs like flight operations and maintenance, or ground-based RS, which incurs ongoing
labor costs related to fieldwork, satellite RS is a more cost-effective option. Additionally,
RS using satellites is known to be reasonably accurate, while airborne RS is even more
precise because it has a higher spatial resolution [190]. However, ground-based RS is
the most accurate method, involving direct contact with the soil surface. Satellite RS is
highly efficient for large areas, while airborne remote sensing is moderately efficient with
higher spatial resolution than ground-based, which is less efficient due to limited coverage.
Remote sensing via satellite is highly scalable and suitable for covering large areas, while
airborne remote sensing is more effective for smaller regions. However, ground-based
remote sensing has limitations as it covers a smaller area and requires more labor.

RS sensors can capture data across different wavelengths of the electromagnetic
spectrum and allow for mineral composition, organic matter, and vegetation cover extract.
The authors of [191] confirmed that utilizing hyperspectral imaging is one trend in soil
properties RS because it involves collections of images at various wavelengths, allowing
for detailed analysis of soil properties. RS data can be integrated with other geospatial
data to provide more adequate details about factors influencing soil properties, which can
be collected to track environmental changes such as deforestation and urbanization [192].
To monitor the health of ecosystems, RS has been used to measure changes in vegetation
cover [76]. It can offer a wealth of knowledge regarding soil characteristics, but they need
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to be calibrated and verified using real-world data [193]. Ref. [194] affirmed that RS data
are accessible remotely, making it easier for researchers, policymakers, and land managers
to access and analyze the information (using UAVs) quickly and effectively gather high-
resolution data on soil properties over broad areas without the need for physical presence
in the field [195,196].

Table 6. Comparison of the performance methods of remote sensing on various parameters.

Advantages Satellite Aerial Photography Ground-Based Sensor

Accuracy Broad overview of large area Aerial photography achieves
sub-meter spatial resolution

provide the highest level of
precision in soil monitoring

Analysis
Spatial resolution, frequency of data

acquisition, and access to
specialized datasets.

Higher spatial resolution Varies depending on the type and
number of sensors required

Monitoring
Well-suited for regional-scale
assessments due to its broad

coverage

Suitable for local-scale analysis
where high-resolution data are

required

Ideal for localized soil monitoring
where precise measurements are

needed

Accessibility Non-destructive, highly accessible,
and high temporal resolution

Non-destructive and becoming
more accessible with advancements

in technology

Non-destructiveness depends on
the specific technique used, but itis

generally highly accessible

Coverage Global coverage and capable of
collecting data over large areas

Higher spatial resolution compared
to satellite but limited coverage

Detailed information about specific
locations or small areas

Data
Management

Generates vast amounts of data that
need to be transmitted, stored, and

processed efficiently

Generates large datasets but with
more manageable volumes

compared to satellites

produces smaller datasets that can
be easily managed using standard

data management practices

Disadvantages

Resolutions Limited spatial resolution and
atmospheric interference Effect of weather condition Limited to localize monitoring

Sensitivity Lack of detailed information at
smaller scales Very sensitive and expert attention Required standard set-up

Cost Expensive, especially if it requires
frequent updates Expensive Expensive and capital-intensive

Availability Required technical know-how
LiDAR or hyperspectral cameras

are less accessible due to their
higher cost and limited availability

Vary in terms of temporal
resolution

Data
transmission

Requires robust infrastructure and
specialized software tools for data

handling and analysis

Require network and base station
for its data transmission

Errors may occur during data
transmission

Functions Highly sensitive and require
thorough observation

High cost of flight paths and
operational costs

Coverage is limited to the
immediate vicinity of the sensor

location

Advancement to Decrease Uncertainties in RS Applications for Soil Measurement

Remote sensing applications for soil measurements can be complicated due to various
factors, including sensor limitations, atmospheric interference, and the intricate nature of
soil properties [197,198]. Nevertheless, progress has been made in remote sensing technolo-
gies and methodologies to address these uncertainties [198]. These developments have im-
proved soil measurements’ accuracy, dependability, and efficiency through remote sensing.
The emergence of high-resolution sensors has brought about a substantial breakthrough
in soil measurements via remote sensing, where sensors provide an in-depth analysis of
surface characteristics, thereby elevating the precision of soil measurements [199]. Their
excellent spatial resolution allows them to sense even the minutest soil variations and
uncover previously undetectable patterns in soil, thereby vastly improving comprehension
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of soil properties [200]. Also, scientists can better understand soil characteristics by merging
information from various sensors and sources [95]. When combined, optical and radar
sensors enhance the precision of soil moisture content and other essential factors. The
amalgamation of data from numerous sensors overcomes the constraints of individual
sensors, resulting in a more robust evaluation of soil conditions [200]. This breakthrough is
a game-changer, supporting more informed decision-making.

Machine learning and artificial intelligence advancements have significantly improved
remote sensing for soil measurements by reducing uncertainties. Machine learning al-
gorithms can recognize patterns in remotely sensed data and accurately predict soil
properties [95]. These algorithms learn from large datasets that contain ground-truth
measurements, establishing relationships between remotely sensed data and specific soil
parameters [199]. By leveraging machine learning techniques, researchers can improve
the accuracy of soil measurements obtained via remote sensing and reduce uncertainties
associated with data interpretation [197]. Implementing advanced atmospheric correction
algorithms is a critical step toward reducing uncertainties in soil measurements obtained
via remote sensing [198]. These algorithms are designed to eliminate atmospheric distor-
tions that interfere with the signals received by remote sensing sensors, ultimately leading
to inaccurate soil parameter estimations. With the aid of atmospheric models and ancillary
data, researchers can obtain more dependable soil measurements that are less prone to error.

Finally, the future trends in RS for soil monitoring include the use of hyperspectral
imaging, unmanned aerial vehicles (UAVs), machine learning and artificial intelligence
(AI), the integration of multiple sensors, and real-time monitoring with decision support
systems [87]. These advancements can revolutionize agriculture and environmental man-
agement by providing accurate and timely information about soil properties and conditions.
By leveraging these technologies, decisions are easily made to optimize resource allocation,
improve crop productivity, and promote sustainable land use practices.

6. Future Directions and Research Opportunities

The potential of RS technologies in soil measurements for various applications is
vast. These technologies can aid in precision agriculture, environmental monitoring, and
understanding the impact of climate change on soil health [201,202]. However, RS for
soil measurements comes with several challenges that need to be addressed, including
cloud cover, sensor limitations, and data processing complexities [15,203]. Despite these
obstacles, we are confident that ongoing research and technological advancements can
help overcome them. Soil measurements should be simple, like digging your hands into
the earth [204]. Researchers have been exploring ways to gain a more comprehensive
understanding of soil characteristics in recent years [6,9,153,205]. One particularly effec-
tive method combines remote sensing data with Geographic Information System (GIS)
data [206]. Scientists can analyze patterns and relationships between soil properties and
environmental factors by superimposing soil measurements onto spatial maps [207]. It
is like piecing together a soil puzzle, where each component contributes to a bigger pic-
ture [14,208]. In addition to this, incorporating ground-based measurements is another
way to enhance soil analysis [209–212]. Scientists can validate and calibrate remote sens-
ing data by taking direct measurements at specific locations, ensuring its accuracy and
speed [212], and double-checking everything to ensure the remote sensing technology is
reliable [211,213,214].

In conclusion, the advancements and innovations in remote sensing technologies have
significantly improved soil measurement capabilities. Integrating high-resolution imagery,
enhanced spectral analysis techniques, and remote sensing with other data sources has
enabled more accurate and comprehensive soil assessments [134,162,215]. As these tech-
nologies evolve, there is immense potential for further advancements in data acquisition,
processing, and developing more sophisticated algorithms. However, data interpretation
and validation challenges remain, necessitating ongoing research and collaboration among
scientists, technologists, and policymakers. With continued efforts, the future of remote
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sensing technologies for soil measurements holds promising possibilities for sustainable
land management and agricultural practices.

7. Conclusions

RS is an effective tool for measuring soil properties using electromagnetic and acoustic
methods, which provides accurate and efficient data about the soil. This review article cov-
ers the latest advancements in remote sensing for soil measurements and their applications.
It provides a comprehensive overview of this field’s various techniques and technologies.
The article emphasizes the significant progress made in remote sensing, which can accu-
rately assess soil properties and monitor changes over time. Throughout the review, it is
clear that satellite remote sensing is the most effective and reliable method for soil measure-
ment applications. Compared to ground-based or airborne systems, satellite-based sensors
have several advantages. They offer global coverage, which enables large-scale monitoring
and analysis of soil properties across different regions and landscapes. This extensive cov-
erage is particularly beneficial for agricultural applications, where understanding regional
or global soil conditions is crucial for optimizing crop management practices. With satellite
RS technology, researchers can accurately monitor soil properties over time because it has
extensive coverage, which makes it even more reliable and provides a consistent tool for
analyzing soil properties. It is multispectral and hyperspectral capabilities can extract
valuable information about soil composition. By leveraging this powerful tool, we can
better manage our land resources and gain insights into the state of the soil.

Using satellite remote sensing is a non-disruptive means of soil measurement that
avoids interfering with the environment. In contrast to conventional methods that ne-
cessitate invasive sampling, this technique permits prolonged monitoring and generates
valuable data for extensive analysis. While airborne and ground-based systems have
unique benefits and applications, satellite remote sensing is the most efficient and practical
approach to soil measurement. Its ability to cover the entire planet, provide uniform data,
leverage multispectral capabilities, and do so without causing harm makes it a potent tool.
The utilization of satellite remote sensing technology has the potential to enhance soil man-
agement practices and foster sustainable agriculture. Nevertheless, further investigations
are required to progress soil property measurement methodologies, encompassing calibra-
tion, sensor fusion, machine learning, and AI applications. We can improve the accuracy
and applicability of remote sensing-based soil property measurements by addressing these
research gaps.
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52. Ilčev, S.D. Satellite Meteorological Parameters. In Global Satellite Meteorological Observation (GSMO) Theory; Springer:

Berlin/Heidelberg, Germany, 2018; Volume 1, pp. 293–362.
53. Moshayedi, A.J.; Sohail Khan, A.; Hu, J.; Nawaz, A.; Zhu, J. E-Nose-Driven Advancements in Ammonia Gas Detection:

A Comprehensive Review from Traditional to Cutting-Edge Systems in Indoor to Outdoor Agriculture. Sustainability 2023, 15,
11601.

54. Rodríguez-Lozano, B.; Rodríguez-Caballero, E.; Maggioli, L.; Cantón, Y. Non-Destructive Biomass Estimation in Mediterranean
Alpha Steppes: Improving Traditional Methods for Measuring Dry and Green Fractions by Combining Proximal Remote Sensing
Tools. Remote Sens. 2021, 13, 2970.

55. Kumar, S.; Gautam, G.; Saha, S.K. Hyperspectral remote sensing data derived spectral indices in characterizing salt-affected soils:
A case study of Indo-Gangetic plains of India. Environ. Earth Sci. 2015, 73, 3299–3308.

56. Ciampalini, A.; André, F.; Garfagnoli, F.; Grandjean, G.; Lambot, S.; Chiarantini, L.; Moretti, S. Improved estimation of soil clay
content by the fusion of remote hyperspectral and proximal geophysical sensing. J. Appl. Geophys. 2015, 116, 135–145.

https://doi.org/10.3390/agronomy11030433
https://doi.org/10.1029/2018RG000598
https://doi.org/10.1016/j.geoderma.2021.115232
https://doi.org/10.1016/j.rse.2020.111747
https://doi.org/10.1016/j.rse.2019.111383


Sustainability 2023, 15, 15444 26 of 32

57. Salvatore, M.R.; Barrett, J.E.; Fackrell, L.E.; Sokol, E.R.; Levy, J.S.; Kuentz, L.C.; Gooseff, M.N.; Adams, B.J.; Power, S.N.; Knightly,
J.P.; et al. The Distribution of Surface Soil Moisture over Space and Time in Eastern Taylor Valley, Antarctica. Remote Sens. 2023,
15, 3170.

58. Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining
procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [CrossRef]

59. Mohamed, E.S.; Saleh, A.M.; Belal, A.B.; Gad, A.A. Application of near-infrared reflectance for quantitative assessment of soil
properties. Egypt. J. Remote Sens. Space Sci. 2018, 21, 1–14. [CrossRef]

60. Zahir, S.A.D.M.; Omar, A.F.; Jamlos, M.F.; Azmi, M.A.M.; Muncan, J. A review of visible and near-infrared (Vis-NIR) spectroscopy
application in plant stress detection. Sens. Actuators A Phys. 2022, 338, 113468. [CrossRef]

61. Balaram, V.; Sawant, S.S. Indicator Minerals, Pathfinder Elements, and Portable Analytical Instruments in Mineral Exploration
Studies. Minerals 2022, 12, 394.

62. Farella, M.M.; Fisher, J.B.; Jiao, W.; Key, K.B.; Barnes, M.L. Thermal remote sensing for plant ecology from leaf to globe. J. Ecol.
2022, 110, 1996–2014. [CrossRef]

63. Manolakis, D.; Pieper, M.; Truslow, E.; Lockwood, R.; Weisner, A.; Jacobson, J.; Cooley, T. Longwave Infrared Hyperspectral
Imaging: Principles, Progress, and Challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 72–100. [CrossRef]

64. Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91.
65. Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future

trends. Phys. Chem. Earth Parts A/B/C 2015, 83, 36–56.
66. Li, Y.-y.; Zhao, K.; Ren, J.-h.; Ding, Y.-l.; Wu, L.-l. Analysis of the Dielectric Constant of Saline-Alkali Soils and the Effect on

Radar Backscattering Coefficient: A Case Study of Soda Alkaline Saline Soils in Western Jilin Province Using RADARSAT-2 Data.
Sci. World J. 2014, 2014, 563015. [CrossRef] [PubMed]

67. Gharechelou, S.; Tateishi, R.; Sumantyo, J.T.S. Interrelationship analysis of L-band backscattering intensity and soil dielectric
constant for soil moisture retrieval using PALSAR data. Adv. Remote Sens. 2015, 4, 15. [CrossRef]

68. Cuenca-García, C.; Risbøl, O.; Bates, C.R.; Stamnes, A.A.; Skoglund, F.; Ødegård, Ø.; Viberg, A.; Koivisto, S.; Fuglsang, M.; Gabler,
M. Sensing archaeology in the north: The use of non-destructive geophysical and remote sensing methods in archaeology in
Scandinavian and North Atlantic territories. Remote Sens. 2020, 12, 3102.

69. Iftimie, N.; Savin, A.; Steigmann, R.; Dobrescu, G.S. Underground pipeline identification into a non-destructive case study based
on ground-penetrating radar imaging. Remote Sens. 2021, 13, 3494. [CrossRef]

70. Raj, M.; Gupta, S.; Chamola, V.; Elhence, A.; Garg, T.; Atiquzzaman, M.; Niyato, D. A survey on the role of Internet of Things for
adopting and promoting Agriculture 4.0. J. Netw. Comput. Appl. 2021, 187, 103107.

71. Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Li Liu, D. High resolution mapping of soil organic carbon stocks
using remote sensing variables in the semi-arid rangelands of eastern Australia. Sci. Total Environ. 2018, 630, 367–378. [CrossRef]

72. Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture.
Remote Sens. 2020, 12, 2659. [CrossRef]

73. Zribi, M.; Baghdadi, N.; Nolin, M. Remote sensing of soil. Appl. Environ. Soil Sci. 2011, 2011, 904561. [CrossRef]
74. Schuster, J.; Hagn, L.; Mittermayer, M.; Maidl, F.-X.; Hülsbergen, K.-J. Using Remote and Proximal Sensing in Organic Agriculture

to Assess Yield and Environmental Performance. Agronomy 2023, 13, 1868.
75. Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-go soil sensors for precision agriculture. Comput. Electron.

Agric. 2004, 44, 71–91. [CrossRef]
76. Wang, J.; Zhen, J.; Hu, W.; Chen, S.; Lizaga, I.; Zeraatpisheh, M.; Yang, X. Remote sensing of soil degradation: Progress and

perspective. Int. Soil Water Conserv. Res. 2023, 11, 429–454.
77. Li, Y.; Dang, B.; Zhang, Y.; Du, Z. Water body classification from high-resolution optical remote sensing imagery: Achievements

and perspectives. ISPRS J. Photogramm. Remote Sens. 2022, 187, 306–327.
78. Zhu, Q.-B.; Li, B.; Yang, D.-D.; Liu, C.; Feng, S.; Chen, M.-L.; Sun, Y.; Tian, Y.-N.; Su, X.; Wang, X.-M.; et al. A flexible ultrasensitive

optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798. [CrossRef]
79. Shaik, R.U.; Periasamy, S.; Zeng, W. Potential Assessment of PRISMA Hyperspectral Imagery for Remote Sensing Applications.

Remote Sens. 2023, 15, 1378. [CrossRef]
80. Zhu, X.X.; Bamler, R. A sparse image fusion algorithm with application to pan-sharpening. IEEE Trans. Geosci. Remote Sens. 2012,

51, 2827–2836. [CrossRef]
81. Ghilain, N.; Arboleda, A.; Batelaan, O.; Ardö, J.; Trigo, I.; Barrios, J.-M.; Gellens-Meulenberghs, F. A New Retrieval Algorithm for

Soil Moisture Index from Thermal Infrared Sensor On-Board Geostationary Satellites over Europe and Africa and Its Validation.
Remote Sens. 2019, 11, 1968.

82. Lobsey, C.R.; Rossel, R.A.V.; McBratney, A.B. Proximal Soil Nutrient Sensing Using Electrochemical Sensors. In Proximal Soil
Sensing; Viscarra Rossel, R.A., McBratney, A.B., Minasny, B., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 77–88.
[CrossRef]

83. Yu, H.; Kong, B.; Wang, Q.; Liu, X.; Liu, X. Hyperspectral Remote Sensing Applications in Soil: A Review. In Hyperspectral
Remote Sensing; Pandey, P.C., Srivastava, P.K., Balzter, H., Bhattacharya, B., Petropoulos, G.P., Eds.; Elsevier: Amsterdam, The
Netherlands, 2020; pp. 269–291. [CrossRef]

https://doi.org/10.1016/j.rse.2018.04.047
https://doi.org/10.1016/j.ejrs.2017.02.001
https://doi.org/10.1016/j.sna.2022.113468
https://doi.org/10.1111/1365-2745.13957
https://doi.org/10.1109/MGRS.2018.2889610
https://doi.org/10.1155/2014/563015
https://www.ncbi.nlm.nih.gov/pubmed/25101317
https://doi.org/10.4236/ars.2015.41002
https://doi.org/10.3390/rs13173494
https://doi.org/10.1016/j.scitotenv.2018.02.204
https://doi.org/10.3390/rs12162659
https://doi.org/10.1155/2011/904561
https://doi.org/10.1016/j.compag.2004.03.002
https://doi.org/10.1038/s41467-021-22047-w
https://doi.org/10.3390/rs15051378
https://doi.org/10.1109/TGRS.2012.2213604
https://doi.org/10.1007/978-90-481-8859-8_6
https://doi.org/10.1016/B978-0-08-102894-0.00011-5


Sustainability 2023, 15, 15444 27 of 32

84. Kumar, P.S.J.; Huan, T.L.; Li, X.; Yuan, Y. Panchromatic and multispectral remote sensing image fusion using machine learning for
classifying bucolic and farming region. Int. J. Comput. Sci. Eng. 2018, 15, 340–370.

85. Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Electrochemical Soil Nitrate Sensor for In Situ Real-Time
Monitoring. Micromachines 2023, 14, 1314. [CrossRef] [PubMed]
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93. Gomez, C.; Gholizadeh, A.; Borůvka, L.; Lagacherie, P. Using legacy data for correction of soil surface clay content predicted from
VNIR/SWIR hyperspectral airborne images. Geoderma 2016, 276, 84–92.

94. Dvorak, J.S.; Stone, M.L.; Self, K.P. Object detection for agricultural and construction environments using an ultrasonic sensor.
J. Agric. Saf. Health 2016, 22, 107–119.

95. Nie, W.; Kumar, S.V.; Bindlish, R.; Liu, P.-W.; Wang, S. Remote sensing-based vegetation and soil moisture constraints reduce
irrigation estimation uncertainty. Environ. Res. Lett. 2022, 17, 084010. [CrossRef]

96. Walther, M.; Fischer, B.M.; Ortner, A.; Bitzer, A.; Thoman, A.; Helm, H. Chemical sensing and imaging with pulsed terahertz
radiation. Anal. Bioanal. Chem. 2010, 397, 1009–1017.

97. Meng, K.; Xiao, X.; Wei, W.; Chen, G.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable Pressure Sensors for Pulse Wave
Monitoring. Adv. Mater. 2022, 34, 2109357. [CrossRef]

98. Wei, Z.; Zhao, J.; He, H.; Ding, G.; Cui, H.; Liu, L. Future smart battery and management: Advanced sensing from external to
embedded multi-dimensional measurement. J. Power Sources 2021, 489, 229462. [CrossRef]

99. Quraishi, M.Z.; Mouazen, A.M. Calibration of an on-line sensor for measurement of topsoil bulk density in all soil textures.
Soil Tillage Res. 2013, 126, 219–228. [CrossRef]

100. Nagarajan, G.; Minu, R.I. Wireless soil monitoring sensor for sprinkler irrigation automation system. Wirel. Pers. Commun. 2018,
98, 1835–1851. [CrossRef]

101. Pei, X.; Sudduth, K.A.; Veum, K.S.; Li, M. Improving In-Situ Estimation of Soil Profile Properties Using a Multi-Sensor Probe.
Sensors 2019, 19, 1011. [CrossRef]

102. Foldager, F.F.; Pedersen, J.M.; Haubro Skov, E.; Evgrafova, A.; Green, O. LiDAR-Based 3D Scans of Soil Surfaces and Furrows in
Two Soil Types. Sensors 2019, 19, 661. [CrossRef] [PubMed]

103. Mahmood, H.S.; Hoogmoed, W.B.; van Henten, E.J. Sensor data fusion to predict multiple soil properties. Precis. Agric. 2012, 13,
628–645. [CrossRef]

104. Naderi-Boldaji, M.; Sharifi, A.; Alimardani, R.; Hemmat, A.; Keyhani, A.; Loonstra, E.H.; Weisskopf, P.; Stettler, M.; Keller, T. Use
of a triple-sensor fusion system for on-the-go measurement of soil compaction. Soil Tillage Res. 2013, 128, 44–53. [CrossRef]

105. Messina, G.; Peña, J.M.; Vizzari, M.; Modica, G. A comparison of UAV and satellites multispectral imagery in monitoring onion
crop. An application in the ‘Cipolla Rossa di Tropea’ (Italy). Remote Sens. 2020, 12, 3424. [CrossRef]

106. Verma, S.; Verma, R.K.; Mishra, S.K.; Singh, A.; Jayaraj, G.K. A revisit of NRCS-CN inspired models coupled with RS and GIS for
runoff estimation. Hydrol. Sci. J. 2017, 62, 1891–1930. [CrossRef]

107. Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst.
Eng. 2013, 114, 358–371.

108. Wong, M.S.; Zhu, X.; Abbas, S.; Kwok, C.Y.T.; Wang, M. Optical Remote Sensing. In Urban Informatics; Springer: Singapore, 2021;
pp. 315–344. [CrossRef]

109. Abdollahi, S.; Madadi, M.; Ostad-Ali-Askari, K. Monitoring and investigating dust phenomenon on using remote sensing science,
geographical information system and statistical methods. Appl. Water Sci. 2021, 11, 111.

110. West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and
future opportunities. Remote Sens. Environ. 2019, 232, 111291.

https://doi.org/10.3390/mi14071314
https://www.ncbi.nlm.nih.gov/pubmed/37512625
https://doi.org/10.1016/j.rsase.2018.10.011
https://doi.org/10.3390/s16010119
https://www.ncbi.nlm.nih.gov/pubmed/26797618
https://doi.org/10.3390/rs70708250
https://www.ncbi.nlm.nih.gov/pubmed/32344911
https://doi.org/10.3390/mi14020314
https://doi.org/10.1088/1748-9326/ac7ed8
https://doi.org/10.1002/adma.202109357
https://doi.org/10.1016/j.jpowsour.2021.229462
https://doi.org/10.1016/j.still.2012.08.005
https://doi.org/10.1007/s11277-017-4948-y
https://doi.org/10.3390/s19051011
https://doi.org/10.3390/s19030661
https://www.ncbi.nlm.nih.gov/pubmed/30736303
https://doi.org/10.1007/s11119-012-9280-7
https://doi.org/10.1016/j.still.2012.10.002
https://doi.org/10.3390/rs12203424
https://doi.org/10.1080/02626667.2017.1334166
https://doi.org/10.1007/978-981-15-8983-6_20


Sustainability 2023, 15, 15444 28 of 32

111. Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.G.; Oliphant, A.; Xiong, J.; Giri, C.; Pyla, V.; Dixit, S.; Whitbread, A.M. Agricultural
cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine
learning algorithms on the Google Earth Engine cloud. GIScience Remote Sens. 2020, 57, 302–322. [CrossRef]

112. Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward,
A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147.
[CrossRef]

113. Ustin, S.L.; Middleton, E.M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 2021,
10, 1. [CrossRef] [PubMed]

114. Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.;
Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [CrossRef]

115. Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A Systematic Review of Landsat Data for Change Detection
Applications: 50 Years of Monitoring the Earth. Remote Sens. 2021, 13, 2869. [CrossRef]

116. Denis, G.; Claverie, A.; Pasco, X.; Darnis, J.-P.; de Maupeou, B.; Lafaye, M.; Morel, E. Towards disruptions in Earth observation?
New Earth Observation systems and markets evolution: Possible scenarios and impacts. Acta Astronaut. 2017, 137, 415–433.
[CrossRef]

117. Gilliam, A.D.; Pollard, T.B.; Neff, A.; Dong, Y.; Sorensen, S.; Wagner, R.; Chew, S.; Rovito, T.V.; Mundy, J.L. SatTel: A Framework
for Commercial Satellite Imagery Exploitation. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer
Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 278–286.

118. Fred, A.K.; William, M.B.; Sandra, L.P. Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands
for mineral mapping. J. Appl. Remote Sens. 2015, 9, 096044. [CrossRef]

119. Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.;
et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens.
Environ. 2019, 225, 45–64. [CrossRef]

120. Kazansky, Y.; Wood, D.; Sutherlun, J. The current and potential role of satellite remote sensing in the campaign against malaria.
Acta Astronaut. 2016, 121, 292–305. [CrossRef]

121. Schumann, G.J.P.; Brakenridge, G.R.; Kettner, A.J.; Kashif, R.; Niebuhr, E. Assisting Flood Disaster Response with Earth
Observation Data and Products: A Critical Assessment. Remote Sens. 2018, 10, 1230.

122. Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote
sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [CrossRef]

123. Jiang, B.; Su, H.; Liu, K.; Chen, S. Assessment of Remotely Sensed and Modelled Soil Moisture Data Products in the U.S. Southern
Great Plains. Remote Sens. 2020, 12, 2030.

124. Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.;
Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145,
154–172. [CrossRef]

125. Turner, W.; Rondinini, C.; Pettorelli, N.; Mora, B.; Leidner, A.K.; Szantoi, Z.; Buchanan, G.; Dech, S.; Dwyer, J.; Herold, M.; et al.
Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 2015, 182, 173–176. [CrossRef]

126. Mathieu, P.P.; Borgeaud, M.; Desnos, Y.L.; Rast, M.; Brockmann, C.; See, L.; Kapur, R.; Mahecha, M.; Benz, U.; Fritz, S. The ESA’s
Earth Observation Open Science Program [Space Agencies]. IEEE Geosci. Remote Sens. Mag. 2017, 5, 86–96. [CrossRef]

127. Niro, F.; Goryl, P.; Dransfeld, S.; Boccia, V.; Gascon, F.; Adams, J.; Themann, B.; Scifoni, S.; Doxani, G. European Space Agency
(ESA) Calibration/Validation Strategy for Optical Land-Imaging Satellites and Pathway towards Interoperability. Remote Sens.
2021, 13, 3003.

128. Harris, R.; Baumann, I. Open data policies and satellite Earth observation. Space Policy 2015, 32, 44–53. [CrossRef]
129. Moradkhani, H. Hydrologic Remote Sensing and Land Surface Data Assimilation. Sensors 2008, 8, 2986–3004.
130. Lakshmi, V. Remote Sensing of Soil Moisture. ISRN Soil Sci. 2013, 2013, 424178. [CrossRef]
131. Belward, A.S.; Skøien, J.O. Who launched what, when and why; trends in global land-cover observation capacity from civilian

earth observation satellites. ISPRS J. Photogramm. Remote Sens. 2015, 103, 115–128. [CrossRef]
132. Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy,

D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [CrossRef]
133. Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the Application of Remote Sensing in Effective Monitoring of Water

Quality Parameters. Remote Sens. 2023, 15, 1938.
134. Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard,

E.T.A.; et al. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring.
Remote Sens. 2016, 8, 70.

135. Escribano, P.; Schmid, T.; Chabrillat, S.; Rodríguez-Caballero, E.; García, M. Optical Remote Sensing for Soil Mapping and
Monitoring. In Soil Mapping and Process Modeling for Sustainable Land Use Management; Pereira, P., Brevik, E.C., Muñoz-Rojas, M.,
Miller, B.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 87–125. [CrossRef]

136. Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and
spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote
Sens. Environ. 2019, 232, 111280. [CrossRef]

https://doi.org/10.1080/15481603.2019.1690780
https://doi.org/10.1016/j.rse.2019.02.015
https://doi.org/10.1186/s13717-020-00255-4
https://www.ncbi.nlm.nih.gov/pubmed/33425642
https://doi.org/10.1016/j.rse.2022.113195
https://doi.org/10.3390/rs13152869
https://doi.org/10.1016/j.actaastro.2017.04.034
https://doi.org/10.1117/1.JRS.9.096044
https://doi.org/10.1016/j.rse.2019.02.013
https://doi.org/10.1016/j.actaastro.2015.09.021
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1016/j.rse.2014.02.001
https://doi.org/10.1016/j.biocon.2014.11.048
https://doi.org/10.1109/MGRS.2017.2688704
https://doi.org/10.1016/j.spacepol.2015.01.001
https://doi.org/10.1155/2013/424178
https://doi.org/10.1016/j.isprsjprs.2014.03.009
https://doi.org/10.1016/j.rse.2015.11.032
https://doi.org/10.1016/B978-0-12-805200-6.00004-9
https://doi.org/10.1016/j.rse.2019.111280


Sustainability 2023, 15, 15444 29 of 32

137. Visser, S.; Keesstra, S.; Maas, G.; de Cleen, M.; Molenaar, C. Soil as a Basis to Create Enabling Conditions for Transitions towards
Sustainable Land Management as a Key to Achieve the SDGs by 2030. Sustainability 2019, 11, 6792. [CrossRef]

138. Ali, M.A.; Dong, L.; Dhau, J.; Khosla, A.; Kaushik, A. Perspective—Electrochemical Sensors for Soil Quality Assessment.
J. Electrochem. Soc. 2020, 167, 037550. [CrossRef]

139. Köninger, J.; Lugato, E.; Panagos, P.; Kochupillai, M.; Orgiazzi, A.; Briones, M.J.I. Manure management and soil biodiversity:
Towards more sustainable food systems in the EU. Agric. Syst. 2021, 194, 103251. [CrossRef]

140. Zhao, S.; Schmidt, S.; Gao, H.; Li, T.; Chen, X.; Hou, Y.; Chadwick, D.; Tian, J.; Dou, Z.; Zhang, W.; et al. A precision compost
strategy aligning composts and application methods with target crops and growth environments can increase global food
production. Nat. Food 2022, 3, 741–752. [CrossRef]

141. Dimkpa, C.; Bindraban, P.; McLean, J.E.; Gatere, L.; Singh, U.; Hellums, D. Methods for Rapid Testing of Plant and Soil Nutrients.
In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–43.
[CrossRef]

142. Yari, A.; Madramootoo, C.A.; Woods, S.A.; Adamchuk, V.I.; Huang, H.-H. Assessment of field spatial and temporal variabilities
to delineate site-specific management zones for variable-rate irrigation. J. Irrig. Drain. Eng. 2017, 143, 04017037. [CrossRef]

143. Wang, J.; Peng, J.; Li, H.; Yin, C.; Liu, W.; Wang, T.; Zhang, H. Soil Salinity Mapping Using Machine Learning Algorithms with the
Sentinel-2 MSI in Arid Areas, China. Remote Sens. 2021, 13, 305. [CrossRef]

144. Moshayedi, A.J.; Khan, A.S.; Shuxin, Y.; Kuan, G.; Jiandong, H.; Soleimani, M.; Razi, A. E-Nose design and structures from
statistical analysis to application in robotic: A compressive review. EAI Endorsed Trans. AI Robot. 2023, 2, 1–20. [CrossRef]

145. Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of
fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377.
[CrossRef]

146. Tian, F.; Brandt, M.; Liu, Y.Y.; Verger, A.; Tagesson, T.; Diouf, A.A.; Rasmussen, K.; Mbow, C.; Wang, Y.; Fensholt, R. Remote
sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green
biomass data over West African Sahel. Remote Sens. Environ. 2016, 177, 265–276. [CrossRef]

147. Aksoy, S.; Yildirim, A.; Gorji, T.; Hamzehpour, N.; Tanik, A.; Sertel, E. Assessing the performance of machine learning algorithms
for soil salinity mapping in Google Earth Engine platform using Sentinel-2A and Landsat-8 OLI data. Adv. Space Res. 2022, 69,
1072–1086. [CrossRef]

148. Zhang, X.; Zhang, T.; Zhou, P.; Shao, Y.; Gao, S. Validation Analysis of SMAP and AMSR2 Soil Moisture Products over the United
States Using Ground-Based Measurements. Remote Sens. 2017, 9, 104. [CrossRef]

149. Transon, J.; D’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation Applications from Space in
the Sentinel-2 Context. Remote Sens. 2018, 10, 157. [CrossRef]

150. Guanter, L.; Brell, M.; Chan, J.C.W.; Giardino, C.; Gomez-Dans, J.; Mielke, C.; Morsdorf, F.; Segl, K.; Yokoya, N. Synergies of
Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches. Surv. Geophys. 2019, 40, 657–687. [CrossRef]

151. Song, X.; Yan, G.; Wang, J.; Liu, L.; Xue, X.; Li, C.; Huang, W. Use of Airborne Hyperspectral Imagery to Investigate the Influence
of Soil Nitrogen Supplies and Variable-Rate Fertilization to Winter Wheat Growth. In Remote Sensing for Agriculture, Ecosystems,
and Hydrology IX; 67420M; SPIE: Trieste, Italy, 2007; pp. 216–225.

152. Potdar, R.P.; Shirolkar, M.M.; Verma, A.J.; More, P.S.; Kulkarni, A. Determination of soil nutrients (NPK) using optical methods:
A mini review. J. Plant Nutr. 2021, 44, 1826–1839. [CrossRef]

153. Lin, L.; Han, S.; Zhao, P.; Li, L.; Zhang, C.; Wang, E. Influence of soil physical and chemical properties on mechanical characteristics
under different cultivation durations with Mollisols. Soil Tillage Res. 2022, 224, 105520. [CrossRef]

154. Shoemaker, T.A.; McGuire, M.P.; Penzone, S. Soil Density Evaluation Using Solid-State Lidar. Geo-Congress 2022, 2022, 82–91.
[CrossRef]

155. Debnath, S.; Paul, M.; Debnath, T. Applications of LiDAR in Agriculture and Future Research Directions. J. Imaging 2023, 9, 57.
[CrossRef]

156. Andújar, D.; Rueda-Ayala, V.; Moreno, H.; Rosell-Polo, J.R.; Escolá, A.; Valero, C.; Gerhards, R.; Fernández-Quintanilla, C.;
Dorado, J.; Griepentrog, H.-W. Discriminating Crop, Weeds and Soil Surface with a Terrestrial LIDAR Sensor. Sensors 2013, 13,
14662–14675. [CrossRef]

157. Li, C.; Xu, Y.; Liu, Z.; Tao, S.; Li, F.; Fang, J. Estimation of Forest Topsoil Properties Using Airborne LiDAR-Derived Intensity and
Topographic Factors. Remote Sens. 2016, 8, 561. [CrossRef]

158. Lin, J.; Wang, M.; Zhang, M.; Zhang, Y.; Chen, L. Electrochemical Sensors for Soil Nutrient Detection: Opportunity and Challenge.
In International Conference on Computer and Computing Technology in Agriculture, Wuyishan, China, 18–20 August 2007; Springer:
Berlin/Heidelberg, Germany, 2007.

159. Vasques, G.M.; Rodrigues, H.M.; Coelho, M.R.; Baca, J.F.M.; Dart, R.O.; Oliveira, R.P.; Teixeira, W.G.; Ceddia, M.B. Field proximal
soil sensor fusion for improving high-resolution soil property maps. Soil Syst. 2020, 4, 52. [CrossRef]

160. Mahmood, H.S.; Hoogmoed, W.B.; van Henten, E.J. Proximal gamma-ray spectroscopy to predict soil properties using windows
and full-spectrum analysis methods. Sensors 2013, 13, 16263–16280. [CrossRef] [PubMed]

161. Veeke, S.v.d.; Koomans, R.; Limburg, H. Using a gamma-ray spectrometer for soil moisture monitoring: Development of the the
gamma Soil Moisture Sensor (gSMS). In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and
Forestry (MetroAgriFor), Trento, Italy, 4–6 November 2020; pp. 185–190.

https://doi.org/10.3390/su11236792
https://doi.org/10.1149/1945-7111/ab69fe
https://doi.org/10.1016/j.agsy.2021.103251
https://doi.org/10.1038/s43016-022-00584-x
https://doi.org/10.1007/978-3-319-58679-3_1
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001222
https://doi.org/10.3390/rs13020305
https://doi.org/10.4108/airo.v2i1.3056
https://doi.org/10.1016/j.isprsjprs.2019.11.018
https://doi.org/10.1016/j.rse.2016.02.056
https://doi.org/10.1016/j.asr.2021.10.024
https://doi.org/10.3390/rs9020104
https://doi.org/10.3390/rs10020157
https://doi.org/10.1007/s10712-018-9485-z
https://doi.org/10.1080/01904167.2021.1884702
https://doi.org/10.1016/j.still.2022.105520
https://doi.org/10.1061/9780784484067.009
https://doi.org/10.3390/jimaging9030057
https://doi.org/10.3390/s131114662
https://doi.org/10.3390/rs8070561
https://doi.org/10.3390/soilsystems4030052
https://doi.org/10.3390/s131216263
https://www.ncbi.nlm.nih.gov/pubmed/24287541


Sustainability 2023, 15, 15444 30 of 32

162. Gray, P.C.; Ridge, J.T.; Poulin, S.K.; Seymour, A.C.; Schwantes, A.M.; Swenson, J.J.; Johnston, D.W. Integrating Drone Imagery into
High Resolution Satellite Remote Sensing Assessments of Estuarine Environments. Remote Sens. 2018, 10, 1257. [CrossRef]

163. Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil Sensors and Plant Wearables for Smart and Precision Agriculture.
Adv. Mater. 2021, 33, 2007764. [CrossRef]

164. Ramson, S.R.J.; León-Salas, W.D.; Brecheisen, Z.; Foster, E.J.; Johnston, C.T.; Schulze, D.G.; Filley, T.; Rahimi, R.; Soto, M.J.C.V.;
Bolivar, J.A.L.; et al. A Self-Powered, Real-Time, LoRaWAN IoT-Based Soil Health Monitoring System. IEEE Internet Things J.
2021, 8, 9278–9293. [CrossRef]

165. Mekala, M.S.; Viswanathan, P. (t,n): Sensor Stipulation with THAM Index for Smart Agriculture Decision-Making IoT System.
Wirel. Pers. Commun. 2020, 111, 1909–1940. [CrossRef]

166. Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through
remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [CrossRef]

167. Li, S.; Dragicevic, S.; Castro, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A. Geospatial big data
handling theory and methods: A review and research challenges. ISPRS J. Photogramm. Remote Sens. 2016, 115, 119–133.

168. Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep learning meets hyperspectral image analysis: A multidisciplinary review.
J. Imaging 2019, 5, 52. [PubMed]

169. Calp, M.H.; Butuner, R.; Kose, U.; Alamri, A.; Camacho, D. IoHT-based deep learning controlled robot vehicle for paralyzed
patients of smart cities. J. Supercomput. 2022, 78, 11373–11408.

170. Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81,
401–418.

171. Li, K.-Y.; Sampaio de Lima, R.; Burnside, N.G.; Vahtmäe, E.; Kutser, T.; Sepp, K.; Cabral Pinheiro, V.H.; Yang, M.-D.; Vain, A.;
Sepp, K. Toward automated machine learning-based hyperspectral image analysis in crop yield and biomass estimation. Remote
Sens. 2022, 14, 1114.

172. Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current progress and future prospects of agriculture
technology: Gateway to sustainable agriculture. Sustainability 2021, 13, 4883.

173. Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in
various crops: A critical review. Precis. Agric. 2020, 21, 1121–1155.

174. Tighe, M.; Forster, N.; Guppy, C.; Savage, D.; Grave, P.; Young, I.M. Georeferenced soil provenancing with digital signatures.
Sci. Rep. 2018, 8, 3162. [CrossRef]

175. Román, J.R.; Rodríguez-Caballero, E.; Rodríguez-Lozano, B.; Roncero-Ramos, B.; Chamizo, S.; Águila-Carricondo, P.; Cantón,
Y. Spectral Response Analysis: An Indirect and Non-Destructive Methodology for the Chlorophyll Quantification of Biocrusts.
Remote Sens. 2019, 11, 1350.

176. Jawak, S.D.; Vadlamani, S.S.; Luis, A.J. A Synoptic Review on Deriving Bathymetry Information Using Remote Sensing Technolo-
gies: Models, Methods and Comparisons. Adv. Remote Sens. 2015, 4, 16. [CrossRef]

177. Mezza, S.; Vazquez, P.; Ben M’barek Jemai, M.; Fronteau, G. Infrared thermography for the investigation of physical–chemical
properties and thermal durability of Tunisian limestone rocks. Constr. Build. Mater. 2022, 339, 127470. [CrossRef]

178. Chen, Q.; Li, X.; Zhang, Z.; Zhou, C.; Guo, Z.; Liu, Z.; Zhang, H. Remote sensing of photovoltaic scenarios: Techniques,
applications and future directions. Appl. Energy 2023, 333, 120579. [CrossRef]

179. Siddiqui, M.F.; Javaid, A.Y. A Multimodal Facial Emotion Recognition Framework through the Fusion of Speech with Visible and
Infrared Images. Multimodal Technol. Interact. 2020, 4, 46.

180. Schwarz, R.; Mandlburger, G.; Pfennigbauer, M.; Pfeifer, N. Design and evaluation of a full-wave surface and bottom-detection
algorithm for LiDAR bathymetry of very shallow waters. ISPRS J. Photogramm. Remote Sens. 2019, 150, 1–10. [CrossRef]

181. Pastick, N.J.; Jorgenson, M.T.; Wylie, B.K.; Nield, S.J.; Johnson, K.D.; Finley, A.O. Distribution of near-surface permafrost in
Alaska: Estimates of present and future conditions. Remote Sens. Environ. 2015, 168, 301–315. [CrossRef]

182. Eitel, J.U.H.; Höfle, B.; Vierling, L.A.; Abellán, A.; Asner, G.P.; Deems, J.S.; Glennie, C.L.; Joerg, P.C.; LeWinter, A.L.; Magney,
T.S.; et al. Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sens. Environ. 2016, 186,
372–392. [CrossRef]

183. Mohseni, F.; Saba, F.; Mirmazloumi, S.M.; Amani, M.; Mokhtarzade, M.; Jamali, S.; Mahdavi, S. Ocean water quality monitoring
using remote sensing techniques: A review. Mar. Environ. Res. 2022, 180, 105701. [CrossRef]

184. Mallet, A.; Charnier, C.; Latrille, É.; Bendoula, R.; Steyer, J.-P.; Roger, J.-M. Unveiling non-linear water effects in near infrared
spectroscopy: A study on organic wastes during drying using chemometrics. Waste Manag. 2021, 122, 36–48. [CrossRef] [PubMed]

185. Wentz, E.A.; Anderson, S.; Fragkias, M.; Netzband, M.; Mesev, V.; Myint, S.W.; Quattrochi, D.; Rahman, A.; Seto, K.C. Supporting
global environmental change research: A review of trends and knowledge gaps in urban remote sensing. Remote Sens. 2014, 6,
3879–3905.

186. Boccardo, P.; Giulio Tonolo, F. Remote Sensing Role in Emergency Mapping for Disaster Response; Springer: Berlin/Heidelberg,
Germany, 2015.

187. Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne,
UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenvironmental
Disasters 2017, 4, 9.

https://doi.org/10.3390/rs10081257
https://doi.org/10.1002/adma.202007764
https://doi.org/10.1109/JIOT.2021.3056586
https://doi.org/10.1007/s11277-019-06964-0
https://doi.org/10.1016/j.compag.2019.104943
https://www.ncbi.nlm.nih.gov/pubmed/34460490
https://doi.org/10.1038/s41598-018-21530-7
https://doi.org/10.4236/ars.2015.42013
https://doi.org/10.1016/j.conbuildmat.2022.127470
https://doi.org/10.1016/j.apenergy.2022.120579
https://doi.org/10.1016/j.isprsjprs.2019.02.002
https://doi.org/10.1016/j.rse.2015.07.019
https://doi.org/10.1016/j.rse.2016.08.018
https://doi.org/10.1016/j.marenvres.2022.105701
https://doi.org/10.1016/j.wasman.2020.12.019
https://www.ncbi.nlm.nih.gov/pubmed/33482574


Sustainability 2023, 15, 15444 31 of 32

188. Schlögl, M.; Dorninger, P.; Kwapisz, M.; Ralbovsky, M.; Spielhofer, R. Remote Sensing Techniques for Bridge Deformation
Monitoring at Millimetric Scale: Investigating the Potential of Satellite Radar Interferometry, Airborne Laser Scanning and
Ground-Based Mobile Laser Scanning. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2022, 90, 391–411. [CrossRef]

189. Dainelli, R.; Toscano, P.; Di Gennaro, S.F.; Matese, A. Recent Advances in Unmanned Aerial Vehicles Forest Remote Sensing—A
Systematic Review. Part II: Research Applications. Forests 2021, 12, 397. [CrossRef]

190. Opitz, R.; Herrmann, J. Recent trends and long-standing problems in archaeological remote sensing. J. Comput. Appl. Archaeol.
2018, 1, 19–41. [CrossRef]

191. Pande, C.B.; Moharir, K.N. Application of hyperspectral remote sensing role in precision farming and sustainable agriculture
under climate change: A review. In Climate Change Impacts on Natural Resources, Ecosystems and Agricultural Systems; Springer
International Publishing: Cham, Switzerland, 2023; pp. 503–520.

192. Tariq, A.; Shu, H.; Siddiqui, S.; Imran, M.; Farhan, M. Monitoring land use and land cover changes using geospatial techniques, a
case study of Fateh Jang, Attock, Pakistan. Geogr. Environ. Sustain. 2021, 14, 41–52. [CrossRef]

193. Gantimurova, S.; Parshin, A.; Erofeev, V. GIS-Based Landslide Susceptibility Mapping of the Circum-Baikal Railway in Russia
Using UAV Data. Remote Sens. 2021, 13, 3629. [CrossRef]

194. Awais, M.; Li, W.; Cheema, M.J.M.; Zaman, Q.U.; Shaheen, A.; Aslam, B.; Zhu, W.; Ajmal, M.; Faheem, M.; Hussain, S. UAV-based
remote sensing in plant stress imagine using high-resolution thermal sensor for digital agriculture practices: A meta-review. Int.
J. Environ. Sci. Technol. 2022, 20, 1135–1152. [CrossRef]

195. Jiang, L.; Madsen, H.; Bauer-Gottwein, P. Simultaneous calibration of multiple hydrodynamic model parameters using satellite
altimetry observations of water surface elevation in the Songhua River. Remote Sens. Environ. 2019, 225, 229–247. [CrossRef]

196. Su, R.; Wu, J.; Hu, J.; Ma, L.; Ahmed, S.; Zhang, Y.; Abdulraheem, M.I.; Birech, Z.; Li, L.; Li, C. Minimalizing Non-point Source
Pollution Using a Cooperative Ion-Selective Electrode System for Estimating Nitrate Nitrogen in Soil. Front. Plant Sci. 2022, 12,
810214. [CrossRef]

197. Neuendorf, F.; Thiele, J.; Albert, C.; von Haaren, C. Uncertainties in land use data may have substantial effects on environmental
planning recommendations: A plea for careful consideration. PLoS ONE 2021, 16, e0260302. [CrossRef]

198. AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of
drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [CrossRef]

199. Hofsäß, M.; Clifton, A.; Cheng, P.W. Reducing the Uncertainty of Lidar Measurements in Complex Terrain Using a Linear Model
Approach. Remote Sens. 2018, 10, 1465.

200. Xiao, M.; Mascaro, G.; Wang, Z.; Whitney, K.M.; Vivoni, E.R. On the value of satellite remote sensing to reduce uncertainties of
regional simulations of the Colorado River. Hydrol. Earth Syst. Sci. 2022, 26, 5627–5646. [CrossRef]

201. Ayoub Shaikh, T.; Rasool, T.; Rasheed Lone, F. Towards leveraging the role of machine learning and artificial intelligence in
precision agriculture and smart farming. Comput. Electron. Agric. 2022, 198, 107119. [CrossRef]

202. Avtar, R.; Aggarwal, R.; Kharrazi, A.; Kumar, P.; Kurniawan, T.A. Utilizing geospatial information to implement SDGs and
monitor their Progress. Environ. Monit. Assess. 2019, 192, 35. [CrossRef]

203. Gao, Y.; Skutsch, M.; Paneque-Gálvez, J.; Ghilardi, A. Remote sensing of forest degradation: A review. Environ. Res. Lett. 2020, 15,
103001. [CrossRef]

204. Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.;
Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications:
A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [CrossRef]

205. Ide, T. Research methods for exploring the links between climate change and conflict. WIREs Clim. Chang. 2017, 8, e456. [CrossRef]
206. Praveen, B.; Sharma, P. A review: The role of geospatial technology in precision agriculture. J. Public Aff. 2020, 20, e1968.

[CrossRef]
207. Bhat, S.A.; Huang, N.F. Big Data and AI Revolution in Precision Agriculture: Survey and Challenges. IEEE Access 2021, 9,

110209–110222. [CrossRef]
208. Shaikh, T.A.; Mir, W.A.; Rasool, T.; Sofi, S. Machine Learning for Smart Agriculture and Precision Farming: Towards Making the

Fields Talk. Arch. Comput. Methods Eng. 2022, 29, 4557–4597. [CrossRef]
209. Yuan, Q.; Xu, H.; Li, T.; Shen, H.; Zhang, L. Estimating surface soil moisture from satellite observations using a generalized

regression neural network trained on sparse ground-based measurements in the continental U.S. J. Hydrol. 2020, 580, 124351.
[CrossRef]

210. van de Vlasakker, P.C.H.; Tonderski, K.; Metson, G.S. A review of nutrient losses to waters from soil-and ground-based urban
agriculture—More nutrient balances than measurements. Front. Sustain. Food Syst. 2022, 6, 842930. [CrossRef]

211. Sankey, J.B.; Sankey, T.T.; Li, J.; Ravi, S.; Wang, G.; Caster, J.; Kasprak, A. Quantifying plant-soil-nutrient dynamics in rangelands:
Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a
shrub-encroached desert grassland. Remote Sens. Environ. 2021, 253, 112223. [CrossRef]

212. Shandas, V.; Voelkel, J.; Williams, J.; Hoffman, J. Integrating Satellite and Ground Measurements for Predicting Locations of
Extreme Urban Heat. Climate 2019, 7, 5.

213. Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA
CCI: A comprehensive assessment using global ground-based observations. Remote Sens. Environ. 2019, 231, 111215. [CrossRef]

https://doi.org/10.1007/s41064-022-00210-2
https://doi.org/10.3390/f12040397
https://doi.org/10.5334/jcaa.11
https://doi.org/10.24057/2071-9388-2020-117
https://doi.org/10.3390/rs13183629
https://doi.org/10.1007/s13762-021-03801-5
https://doi.org/10.1016/j.rse.2019.03.014
https://doi.org/10.3389/fpls.2021.810214
https://doi.org/10.1371/journal.pone.0260302
https://doi.org/10.1002/2014RG000456
https://doi.org/10.5194/hess-26-5627-2022
https://doi.org/10.1016/j.compag.2022.107119
https://doi.org/10.1007/s10661-019-7996-9
https://doi.org/10.1088/1748-9326/abaad7
https://doi.org/10.1109/JSTARS.2020.3021052
https://doi.org/10.1002/wcc.456
https://doi.org/10.1002/pa.1968
https://doi.org/10.1109/ACCESS.2021.3102227
https://doi.org/10.1007/s11831-022-09761-4
https://doi.org/10.1016/j.jhydrol.2019.124351
https://doi.org/10.3389/fsufs.2022.842930
https://doi.org/10.1016/j.rse.2020.112223
https://doi.org/10.1016/j.rse.2019.111215


Sustainability 2023, 15, 15444 32 of 32

214. Zeng, J.; Chen, K.S.; Bi, H.; Chen, Q. A Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product Over United States
and Europe Using Ground-Based Measurements. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4929–4940. [CrossRef]

215. Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing very high resolution UAV imagery for monitoring forest
health during a simulated disease outbreak. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TGRS.2016.2553085
https://doi.org/10.1016/j.isprsjprs.2017.07.007

	Introduction 
	Remote Sensing Methods for Soil Measurements 
	Remote Sensing Methods in Soil Measurements 
	Spectral Reflectance Analysis 
	Thermal Infrared Imaging 
	Radar Remote Sensing 

	Remote Sensing Parts in Soil Measurements 
	Remote Sensing Application in Soil Measurements 
	Remote Sensing Techniques in Soil Measurements 

	Data Sources and Platforms Used in Soil Measurements 
	Advances and Case Studies of Remote Sensing Technologies Applications in Soil Measurements 
	Discussion 
	Future Directions and Research Opportunities 
	Conclusions 
	References

