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Abstract: Plants have evolved intricate signaling pathways, which operate as networks governed
by feedback to deal with stressors. Nevertheless, the sophisticated molecular mechanisms under-
lying these routes still need to be comprehended, and experimental validation poses significant
challenges and expenses. Consequently, computational hypothesis evaluation gains prominence in
understanding plant signaling dynamics. Biosensors are genetically modified to emit light when
exposed to a particular hormone, such as abscisic acid (ABA), enabling quantification. We developed
computational models to simulate the relationship between ABA concentrations and bioluminescent
sensors utilizing the Hill equation and ordinary differential equations (ODEs), aiding better hypothe-
sis development regarding plant signaling. Based on simulation results, the luminescence intensity
was recorded for a concentration of 47.646 RLUs for 1.5 µmol, given the specified parameters and
model assumptions. This method enhances our understanding of plant signaling pathways at the
cellular level, offering significant benefits to the scientific community in a cost-effective manner. The
alignment of these computational predictions with experimental results emphasizes the robustness
of our approach, providing a cost-effective means to validate mathematical models empirically.
The research intended to correlate the bioluminescence of biosensors with plant signaling and its
mathematical models for quantified detection of specific plant hormone ABA.

Keywords: plant hormone signaling pathways; abscisic acid; genetically engineered bacteria;
bioluminescence; mathematical modeling; simulations

1. Introduction

Plant cells have intricate signaling pathways enabling them to perceive and respond to
environmental changes through gene expression and regulatory mechanisms [1,2]. When
plant cells detect stress signals, a series of events is triggered, leading to the activation of
genes and the production of important secondary messengers, such as phytohormones,
reactive oxygen species (ROS), and calcium ions (Ca2+) [3]. These messengers drive physio-
logical adaptations and systemic signal transduction, enabling plants to acclimate. Studies
have shown that plants can integrate different local and systemic signals generated during
conditions of stress combination [4]. During abiotic stress, the most well-studied communi-
cation system is the long-distance communication between plant organs by gibberellins
(GAs), abscisic acid (ABA), and cytokinins, auxins [5]. Abscisic acid controls various plant
biological processes, including seed dormancy, germination, stomatal movement, floral
induction, and leaf senescence. It also plays a crucial role in regulating plant reactions to
different environmental pressures, including drought, salinity, cold, heat, and pathogen
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invasion. ABA operates by regulating the expression of genes that respond to stress, gen-
erating secondary messengers, and initiating signaling pathways to trigger plant stress
responses [6–8]. Plant developmental biology faces the challenge of understanding how
genes and hormones interact to coordinate growth amid changing environments [9].

Mathematical modeling is essential in deciphering how plant hormones govern cell
fate and behavior. These models reveal the dynamics and underlying mechanisms of hor-
mone signaling pathways by integrating experimental data and testing hypotheses. They
predict outcomes under various scenarios and perturbations, offering a quantitative frame-
work to analyze complex interactions among receptors, kinases, transcription factors, and
other molecules [10,11]. However, their effectiveness hinges on the availability of precise
experimental data. Advances in sensing technologies, omics approaches, and quantitative
microscopy are vital for providing detailed, spatiotemporal data on metabolites, gene
expression, protein activity, and network connectivity, thereby enhancing modeling strate-
gies [12]. Various approaches have been employed to model plant cell signaling, including
Boolean network models, partial differential equation (PDE)-based models, stochastic
models, agent-based models, network modeling techniques, and ordinary differential
equation (ODE)-based models. Boolean network models represent ABA signaling as dis-
crete states [13,14], while PDE-based models describe the spatial distribution of signaling
molecules in tissues/organs [15]. Stochastic models capture the probabilistic nature of ABA
signaling events [16], and agent-based models simulate individual plant cells and their
interactions [17]. Network modeling techniques help analyze and understand complex in-
teractions within signaling pathways and networks in plant cells [18], whereas ODE-based
models incorporate critical components of the ABA signaling pathway [19–21]. These mod-
eling approaches provide insights into plant signaling systems’ regulatory mechanisms,
signal transduction processes, and emergent behaviors.

Recent advancements in biotechnology, biochemistry, and bioengineering have made
it possible to quantify information molecules conveyed among plant cells. A biosensor is
an analytical instrument that combines a biological recognition component with a physical
transducer to produce a quantifiable signal directly proportional to the concentration of
the substances being analyzed [22,23]. Reporter proteins, such as those measured by GFP
fluorescence (excitation/emission 488/533 nm) [24] or luciferase “hν~490 nm” [25], exem-
plify this progress. For instance, researchers have developed a quantitative autonomous
bioluminescence reporter system with a wide dynamic range, utilizing the biolumines-
cence pathway from Neonothopanus Nambi, eliminating the need for external luciferase
substrates and making it cost-effective and suitable for high-throughput applications [26].
Additionally, ABA biosensor detection capabilities have been enhanced through genetic
screening techniques using luciferase reporters driven by stress-responsive promoters [27].
Evaluations of different reporter systems, including GUS, LUC, and GFP, emphasize the
importance of selecting appropriate reporter systems for specific applications to develop
efficient ABA biosensors [28]. These advancements underscore the potential of these tech-
nologies in improving ABA detection and enhancing plant studies. Accurate detection
and quantification of ABA are essential for understanding physiological processes and
improving agricultural practices. In this regard, luminescent biosensors offer the potential
for real-time rapid, sensitive, and particular ABA detection [29,30]. By integrating biolumi-
nescence with gene expression systems, whole-cell biosensors can monitor intracellular
ABA levels in real-time scenarios [31], as depicted in Figure 1.

Identifying and observing the light emitted by bioluminescent species, such as biolu-
minescent sensors, is possible through bioluminescence microscopy. This method entails
using a highly responsive camera, usually equipped with a specialized detector like a
photomultiplier tube, to catch the light emitted by the bioluminescent sensor. The camera
captures the emitted light, enabling researchers to observe and analyze the biolumines-
cent activity of the sensor [32,33]. Bioluminescence offers significantly greater quantum
yields compared to classical chemiluminescence [34]. Various modifications to luciferin
and luciferase enzyme mutations enable the development of customizable biosensors with
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tunable emission of different colors like green, yellow, and even blue light, with different
wavelengths [35–37]. Genetically engineered with luciferase genes fused to target-activated
promoters, live cells produce a luminescent signal in response to specific compounds or
stress conditions, often obviating the need for external substrates when using bacterial
luciferase due to the co-transcription of substrate-generating genes [38–40]. An ideal biosen-
sor used for quantitative analysis should exhibit a wide range of biologically substantial
sensitivity, have minimal impact on the system it is used in, be easily detectable, possess
a high signal-to-noise ratio, and provide either relative or absolute quantification of the
targeted signaling event or substrate under investigation [41,42].
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The intricate nature of plant signaling pathways and the pragmatic difficulties linked
to experimentally replicating all potential stress factors on live plants have led to a transi-
tion toward simulation methodologies. Performing comprehensive experiments is not only
laborious but can also be cost-prohibitive. Hence, it is imperative to integrate simulation
approaches into our research. Using simulations, we create a novel opportunity to investi-
gate plant hormone signaling pathways more efficiently and cost-effectively. Simulation
methods are crucial in enhancing experimental data by offering a quantitative framework
for analyzing and replicating the complex dynamics of these pathways. Our research in
this context utilizes simulation techniques as a valuable tool to improve our comprehension
of how plants respond to stimuli and contribute to the progress of this subject.

2. Material and Methods
2.1. Simulating ABA Interaction with PP2C/SnRK2/MAPK

We presented the modeling of plant essential hormones employing the Hill equation
and the ODEs. First, we discuss the biological perspective of hormonal interaction and then
model this interaction. The core signaling pathways that are responsible for ABA receptor
coupling are made up of three main components: the ABA receptors, the PYRABACTIN
RESISTANCE (PYR)/PYR-LIKE (PYL), also known as REGULATORY COMPONENTS OF
ABA RECEPTORS (RCAR) family proteins, the negative regulator clade A type 2 C protein
phosphatases (PP2Cs), and the positive regulator SNF1-related protein kinase 2s (SnRK2s).
Therefore, the activation of SnRK2s and ABA signaling is determined by phosphorylation
and dephosphorylation [43], as shown in Figure 2A. Further, the interplay between ABA
signaling and other signaling pathways, such as the mitogen-activated protein kinase
(MAPK) pathways, Figure 2B, which are essential for stress responses and plant growth
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and development, is another critical feature of ABA signaling. Several MAPK signaling
components, including MPK3, MPK6, and MKK9, exhibit transcriptional modulation,
protein accumulation and stability, and kinase activity upon receiving ABA therapy. The
expression and function of ABA-responsive genes and proteins, including transcription
factors, ion channels, and enzymes, are modulated by these MAPKs [44]. These interactions
have been simulated for visualization and discussed in the results.
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We have developed the code that simulates the interaction of proteins SNRK2, PP2C,
and MAPK with the plant hormone abscisic acid (ABA). The parameters and methodology
are based on the following references:

i. The Hill equation is a widely used model to describe the binding of ligands to re-
ceptors or enzymes. The parameters “K” (half-maximal concentration) and “n” (Hill
coefficient) are commonly used in this equation [45,46].

ii. The rate constants “K1”, “K2”, and “K3” are typical parameters used in ODE mod-
els [19,20,47] for chemical reactions and biological processes [48]. The constants “K1”,
“K2”, and “K3” describe critical processes within our model. “K1” represents the
rate constant for ABA production, “K2” accounts for the degradation of ABA, and
“K3” describes the rate of ABA binding to and dissociating from its receptor. These
constants are crucial for accurately modeling the dynamic behavior of ABA within
the plant system.

iii. The interaction constants “kinteract_SNRK2”, “kinteract_PP2C”, and “kinteract_MAPK” repre-
sent the interaction rates between the respective proteins. These are often determined
experimentally or estimated based on similar systems [49].

iv. The initial concentrations (“CABA_0”, “SNRK2_0”, “PP2C_0”, “MAPK_0”) and the
time span (“tspan”) are specific to the system being modeled and can be adjusted
as needed.
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2.1.1. Protein Interaction with ABA

Defined parameters and variables for simulating protein–protein interaction and the
Hill equation that models the cooperative binding of ABA to its receptor are given as:

Hill equatin = (CABA)
n/

(
Khal f min,max

)n
+ (CABA)

n (1)

where CABA, is ABA concentration.
The system of ordinary differential equations (ODEs) for protein–protein interactions

with ABA is defined as:
dCABA/dt = ksynthesis − K1·CABA (2)

dSNRK2/dt = K2·Hill Equation (3)

dPP2C/dt = kinteractSNRK2 ·SNRK2 − kintericatPP2C ·PP2C (4)

dMAPK/dt = −kinteractSNRK2 ·SNRK2 + kinteractMAPK ·PP2C + K3·ABA (5)

These equations model the dynamics of ABA concentration CABA, SNRK2, PP2C, and
MAPK interactions over time.

2.1.2. Protein Interaction without ABA

This code simulates the interaction of proteins SNRK2, PP2C, and MAPK without the
involvement of ABA. The parameters and methodology are similar to the first code, with
the following differences: The ABA-related terms (“ksynthesis”, “K1”, and the Hill equation)
are removed since ABA is not considered in this simulation. The ODE system is simplified
to include only the interactions between the three proteins, and the initial conditions and
time span are specific to this simulation without ABA.

For interactions without ABA, the system of ODEs is simplified to focus only on
protein–protein interactions:

dPP2C/dt = kinteractSNRK2 ·SNRK2 − kintericatPP2C ·PP2C (6)

dMAPK/dt = −kinteractSNRK2 ·SNRK2 + kinteractMAPK ·PP2C (7)

dSNRK2/dt = −kinteractM APK·PP2C (8)

2.2. Integrating Biological Sensors with Mathematical Modeling of Plant Signaling for Improved
Understanding of Plant Signaling

Integrating luminescent biosensors with mathematical modeling to quantify plant
signaling pathways offers a robust approach to enhancing our understanding of plant
responses and our ability to monitor and manipulate them. This integration provides
several potential benefits [12]. Identifying and observing the light emitted by biolumi-
nescent species is possible through bioluminescence microscopy [32]. Biological sensors
combined with mathematical models enable real-time monitoring of plant responses [50],
quantitative analysis of the underlying signaling mechanisms [50,51], prediction of plant
responses under different conditions, and system optimization of plant responses [12,52,53].
Autonomous bioluminescence reporter system and genetic screening techniques were
described earlier [26,27].

Establishing the Relationship between ABA Signaling, Mathematical Model, and
Biological Sensor

The development of the autonomous bioluminescence reporter system by [26] is an
example of a recent breakthrough in plant synthetic biology. This system offers a reliable
method for quantifying gene expression. This system utilizes the bioluminescence pathway
from Neonothopanus nambi, eliminating the requirement for external luciferase substrates.
As a result, it is both cost-effective and capable of handling many samples simultaneously.
In addition, the genetic screening procedures outlined by [27] utilizing luciferase reporters
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controlled by stress-responsive promoters significantly improves ABA biosensors’ detection
capacities. The Hill equation has been applied to establish a mathematical model that corre-
lates ABA signaling and bioluminescent sensors responding with bioluminescence [45,46].
It is commonly utilized in pharmacology and biochemistry, especially for capturing cooper-
ative binding or activation processes. The association rate constant kon represents the rate
at which ABA molecules bind to the biosensor receptors, measured in M−1 s−1 (moles per
liter per second). This constant is crucial for understanding the biosensors’ binding kinetics
and efficiency n, detecting ABA. For various biological interactions, kon values can differ
significantly. For instance, TCR–pepMHC interactions typically have kon values ranging
from 103 to 105 M−1 s−1 [54,55]. In antibody–antigen interactions, the association rate
constants are generally higher, falling between 105 and 106 M−1 s−1. For a reasonable range
for kon for ABA biosensors 104 to 106 M−1 s−1, reflecting the rapid binding required for
efficient real-time detection of ABA levels in plant physiological studies. Higher kon values
ensure rapid binding of ABA to the biosensor, making the sensor responsive and efficient
for real-time detection.

Similarly, the dissociation rate constant ko f f represents the rate at which ABA molecules
dissociate from the biosensor receptors, measured in s−1 (per second). Typical ko f f value
varies depending on the type of interaction. For TCR–pepMHC interactions, dissociation
half-times ranges from a few seconds to 1–2 min. In antibody–antigen interactions, dis-
sociation half-times can range from a few minutes to an hour or more. FA reasonable
range for koff for ABA biosensors 10−2 to 10−4 s−1 [54,55], ensuring the ABA–receptor
complex remains stable for adequate signal measurement. Lower ko f f value ensures the
ABA–receptor complex remains stable for adequate signal measurement.

To integrate innovative bioluminescence systems [26,27] with our mathematical model,
we define the model that incorporates the terms for synthesizing and degrading sensor
protein mRNA and the sensor protein itself, along with the interaction between ABA and
the sensor protein. Defining the gene/protein expression and interaction (sensor protein)
dynamics, we modeled the transcription of sensor protein mRNA as

d(mRNA)/dt = ktrans·
[
(CABA)

n/
(

khal f

)n
+ (CABA)

n
]
− ktran_deg·(mRNA) (9)

and translation of sensor protein as

d(Protien)/dt = ktran_syn·(mRNA)− kdeg_port·(Protein) (10)

The interaction between ABA and its receptors as association and dissociation of ABA
take into account as synthesized sensor protein,

ABA + Protein
kon
⇌

ko f f

ABA· Protein (11)

The bioluminescence response is established considering the Hill equation,

IBioluminescence = (CABA·Protein)n/
[
Kn

hal f + (CABA·Protein)n
]

(12)

Combining the above equations, we obtain the following system of ODEs, for ABA
concentration dynamics:

d(CABA)/dt = kprod − kdeg·CABA − kon·(CABA·Protein) + ko f f ·(CABA·Protein) (13)

for ABA—receptor complex dynamics:

d(CABA ·Protein)/dt = kon·(CABA·Protein)− ko f f ·(CABA·Protein) (14)
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and for the rate of change in bioluminescence:

d(IBioluminescence)/dt = kresponse·(CABA·Protein)n/
[
Kn

hal f + (CABA·Protein)n
]

(15)

The initial ABA concentration varies from 1.5 to 50 µmol, whereas the values for
CABA·Protein, mRNA, Protein, and IBioluminescence sets to zero in simulations.

This model incorporates detailed gene/protein expression terms, promoter rate con-
stants, and enzyme kinetics, providing a more accurate representation of the ABA biosensor
system. The MATLAB simulation results demonstrate the relationship between initial ABA
concentration and the final bioluminescence response, illustrating the proportional rela-
tionship between detected enzyme activity and bioluminescence.

3. Results
3.1. Visualizing the Interaction of SnRK2, PP2C and MAPK with ABA

In the first part, we simulate the interaction of SnRK2, PP2C, and MAPK with ABA
using ODEs [19,21] and associate it with the Hill equation [45,46]. The related ODEs and
the Hill equation with these proteins model their rates of change over time, capturing
the dynamic nature of their concentrations in response to the absence and presence of
ABA. Interaction constants (kinteract_SNRK2, kinteract_PP2C, and kinteract_MAPK) are introduced
to further simulate the interaction between proteins. The code generates visualizations
that enable the observation of how these protein interactions evolve over time. The plot
illustrating protein concentrations provides a dynamic snapshot of the intricate ballet
between SnRK2, PP2C, and MAPK in Figure 3. Without ABA, Figure 3a shows that PP2C
becomes the primary focus. It deactivates SnRK2 by directly removing its phosphate
groups. This inhibition hinders SnRK2 from phosphorylating subsequent transcription
factors, slowing down ABA signaling [55].

When environmental or developmental cues trigger the presence of ABA Figure 3b,
a captivating transformation occurs. ABA binds to PYR/PYL/RCAR proteins, forming a
complex. This complex then interacts with PP2C, leading to PP2C inhibition. As a result,
SnRK2 awakens from its slumber, ready to activate a cascade of ABA responses [55].

3.2. Simulating the Relationship between ABA Signaling and Bioluminescent Sensors
(ABA-Luminescence Model)

A simulation was created to study the relationship between ABA signaling and the
bioluminescence of biosensors. MATLAB algorithm using the Hill equation in a system
of ODEs was used to capture the interaction between ABA signaling and the sensor
response. Bioluminescence intensity is integrated cumulatively based on the sensor’s
response. Figure 4 shows the correlation between ABA concentrations and bioluminescence
intensity, which varies based on the system’s biological response.
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4. Discussions

This article discusses the theoretical analysis of plant signaling pathways, the role of
mathematical modeling in studying these pathways, ABA signaling, and the effectiveness
of bioluminescent sensors. Utilizing the property of bioluminescence sensors for testing
mathematical models of plant signaling pathways is valuable, leading to the development
of optical biosensors. Given the complexity of a plant’s signaling pathways and the
practical difficulties associated with replicating all potential stress factors on live plants,
researchers increasingly turn to simulation methodologies for rapid results, avoiding
laborious experimental procedures and high costs. This discussion emphasizes plant
signaling, particularly ABA, the advantages of bioluminescent sensors, and mathematical
models used to model plant signaling.

Existing models in the literature have also explored the interactions between ABA
and various proteins. A study investigated the detailed mechanisms of ABA signaling,
focusing on the interactions between ABA, PP2C, and SNRK2 [55]. Whereas [56] detailed
the rate constants and reaction mechanisms derived from experimental data. Another study
by [57] explored the phosphorylation–dephosphorylation cycles involving ABA, PP2C, and
SNRK2. Our model builds upon these foundational studies by incorporating a simplified
yet comprehensive approach to simulate the dynamic interactions between ABA and
proteins. Using the Hill equation to describe cooperative binding and employing ordinary
differential equations, our model captures the essential dynamics of these interactions. This
approach allows for flexible parameter adjustments, providing insights into the system’s
behavior under different conditions.

Calvache et al. developed the Quantitative Autonomous Bioluminescence Reporter
System [26], designed to operate without external luciferase substrates, emphasizing its
wide dynamic range and high sensitivity across varying target molecule concentrations.
Chinnusamy et al. [27] discuss Screening for Gene Regulation Mutants by Bioluminescence
Imaging utilizing the RD29A::LUC construct in Arabidopsis, demonstrating that biolumi-



Biosensors 2024, 14, 378 10 of 12

nescence driven by the RD29A promoter correlates directly with ABA concentration and
other stress factors. Our mathematical model incorporates the Hill equation and ordinary
differential equations (ODEs) to depict ABA–receptor binding dynamics, biosensor tran-
scription and translation, and resultant bioluminescence. Parameters such as association
and dissociation rates, synthesis and degradation rates, and the Hill coefficient define the
biosensor’s sensitivity and response curve. Our model’s initial bioluminescence of 47.646
RLUs for 1.5 µmol of ABA underscores its high sensitivity, aligning with the sensitivity
and dynamic range requirements emphasized by [26,27]. The model demonstrates a linear
relationship between initial ABA concentrations and bioluminescence.

5. Conclusions

This study demonstrates the effective use of computational models to simulate plant
signaling pathways, specifically focusing on ABA interactions and bioluminescence as a
quantifiable response. Taking advantage of the bioluminescence emission’s proportionality
to the identified enzyme makes it a valuable tool for testing mathematical models of plant
signaling pathways, leading to the development of optical biosensors. The complexity
of plant signaling pathways, the practical difficulties in replicating all potential stress
factors on live plants, and the intricacy of biological processes increasingly lead researchers
to utilize simulation methodologies for rapid results, avoiding laborious experimental
procedures and high costs. The simulated integration of ABA with bacterial luminescence
using the ODE model revealed that modified bacteria can respond to varying concentrations
of ABA from 1.5 to 46.5 µM by creating 47.6466 to 48.8 RLUs of bioluminescence. Based on
our simulated model, we predict that combining these approaches allows researchers to
understand plant signaling better and gain new insights into plant growth, development,
and stress responses. Furthermore, the performed sensitivity analysis provides a way
forward for experimental design and parameter estimation efforts in biological systems
modeling, highlighting which parameters are crucial for the model’s behavior. The adopted
research method leads to a feedback system that helps create a loop-based network for
monitoring plant signaling pathways. Interdisciplinary collaboration is vital for addressing
the challenge of understanding plant signaling pathways.
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