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ABSTRACT

This paper proposed an electronic nose system that utilized a SnOz
semiconductor sensor array to detect volatile ammonia gas in farm-
land. All sensors were controlled by the Arduino development board.
The system could collect data during both the steady-state and tran-
sient phases of sensor operation. The collected data was analyzed
using PCA (principal component analysis) and MLP (Multi-layer
perceptron) neural networks. The experiment was divided into
two parts: The first part analyzed four concentrations of ammonia
(100ppm, 200ppm, 400ppm, and Air) using PCA and MLP, which
successfully distinguished the concentrations with an identification
rate of over 95%. In the second part, four gases (air mixed with
ammonia, pure ammonia gas, air mixed with ethanol, and pure
ethanol) were analyzed using PCA and MLP, with the electronic
nose system successfully distinguishing between the four types of
gases. The system could read and process data during the transient
phase of the sensor, and the constructed sensor array electronic
nose system and acquisition method has significant potential for
ammonia detection in agricultural environments.

CCS CONCEPTS

- Computing methodologies; « Machine learning; - Machine
learning approaches; « Neural networks;
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1 INTRODUCTION

Ammonia (NH3) is a colorless gas known for its pungent odour,
which poses a serious threat to human and animal health and the en-
vironment. When exposed to moist mucous surfaces such as those
found in the respiratory tract, skin, and eyes, ammonia reacts to
form a corrosive alkaline solution (ammonium hydroxide), leading
to liquefaction necrosis [1]. Inhaling ammonia can cause damage
to airways and, in extreme cases, even result in acute death [2]. In
pigs, ammonia exposure can trigger lung damage and inflammation,
which can adversely affect meat quality [3]. Furthermore, ammonia
emissions have been linked to an increase in PM2.5 concentrations
in the air [4], a type of atmospheric particulate matter that poses
significant health risks, including the potential for severe illness and
death. With modern industrial advancements, producing ammonia
has become more cost-effective. Ammonia is widely used as a nitro-
gen fertilizer in agriculture, but the use of such fertilizers can lead
to increased ammonia emissions into the atmosphere [5]. Research
from years ago suggests that the majority of atmospheric ammonia
is attributed to agriculture, accounting for 55% of emissions. In
China, 29% of ammonia emissions come from livestock and 47%
from agricultural fertilizer usage [6]. Therefore, detecting volatile
ammonia levels in farmland is critical for managing and mitigating
environmental pollution caused by agriculture. The ammonia can
be detected over various methods as follows:
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The electrochemical method involves an ammonia sensor
capable of detecting gas concentrations as low as 1 ppm. Different
materials adsorb NH3, leading to changes in electrical signals such
as resistance, voltage, and current. These alterations allow for the
calculation of ammonia concentration [7, 8].

The chemiluminescence method offers a detection range of
0.25-100ppm for ammonia gas at the ppb level, making it suitable for
field detection. Notably, this method boasts a fast response speed.
Hu, et al. [9] have devised a catalytic luminescent gas sensor that
accurately measures the ammonia concentration by analyzing the
light emitted through the reaction between the gas and the cat-
alyst surface [7]. The passive collector method involving the
collection of gas via a membrane can accurately measure ammonia
volatilization levels within a range of 0.2 ppb to 100 ppb for up
to a month [7]. However, it has a drawback in that it necessitates
frequent manual replacement of collection materials, resulting in
excessive consumption of manpower and material resources in
monitoring large areas. Additionally, the method does not provide
real-time measurements of ammonia concentration, as the collected
materials must be analyzed to determine the concentration of am-
monia. The photoacoustic method is an accurate way to detect
ammonia concentrations ranging from 0.3-10ppm in a laboratory
setting. Laser radiation, modulated in either frequency or ampli-
tude, is absorbed in wavelengths that align with the absorption
characteristics of the target substance. This produces sound waves
that can be monitored with minimal noise [10]. Though the pho-
toacoustic method is resistant to environmental interference, it
necessitates expensive and cumbersome optical equipment, which
renders it unsuitable for large-scale ammonia detection in agricul-
ture. The fluorescence method can detect ammonia ranging from
0.5-50ppm in the laboratory. Zhang and Lim [11]created a colori-
metric array comprising 4x4 dyes using fluorescence technology
to analyze the medium’s color before and after exposure to gas and
determine ammonia concentration. However, this method is time-
consuming and unsuitable for detecting ammonia concentration
in agricultural environments. But over than mentioned methods,
enose over its benefit attracts more researchers. Electronic noses
have several benefits for gas ammonia detection, including their
ability to detect low levels of ammonia, their fast response time,
and their cost-effectiveness compared to traditional methods of am-
monia detection [12]. To analyze the enose data various methods
were implemented but the most common can be named PCA, Arti-
ficial Neural Networks (ANNs), Support Vector Machines (SVMs)
[13], Partial Least Squares (PLS), and Fuzzy Logic [12]. This paper
proposes an electronic nose sensor array system for the detection
of volatile ammonia in farmland. The system employs PCA and
MLP to differentiate between various gases and varying concentra-
tions of ammonia. The research contribution can be listed below: 1)
Proposed an electronic nose system that utilizes a SnO; semicon-
ductor sensor array for detecting volatile ammonia gas in various
concentrations. 2) Collected data during both the steady-state and
transient time of sensor operation and show the transient time
area ability for gas concentration detection. 3) Analyzed the col-
lected data using PCA and MLP neural networks and successfully
distinguished between four concentrations of ammonia (100ppm,
200ppm, 400ppm, and Air) with an identification rate of over 95%
using PCA and MLP. 4) Distinguished between four types of gases,
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including Air mixed with ammonia and pure ammonia gas, using
PCA and MLP. 5) Demonstrated the system’s ability to read and
process data during the transient area of the sensor. The paper is
organized as follows: The first section covers the gas sensor array,
chamber structure, and data acquisition, while section IIT delves into
the data processing methodology. In section IV, the paper concludes
by analyzing and contrasting the results obtained in two modes:
identifying different concentrations of ammonia and distinguishing
between various odours.

2 MATERIALS AND METHODS
2.1 Gas Sensor Array

To experiment, a sensor array was created using seven different
models of TGS and MQ semiconductor sensors as shown in Table 1
All sensors are controlled by the Arduino-Mega development board,
Arduino is easier to control and use than other microcontrollers
and can monitor sensor data directly from the IDE (Integrated
development environment.

As it is shown in Table 1 the sensor array can sense the various
PPM amount of VOC. In comparison to other types of gas sensors,
the SnO; metal oxide semiconductor gas sensor offers low produc-
tion cost, a simple manufacturing process, and high sensitivity [14].
However, the MQ series sensors are sensitive to changes in mois-
ture, temperature, and humidity, which can affect sensor response.
To maintain consistency in the test results, the experiment strictly
controlled environmental temperature and humidity.

2.2 Chamber structure and Data Acquisition

The data acquisition system utilized in this research is the system
proposed in our previous paper [15]. This system incorporates a
sensor array consisting of the gas sensors listed in Table 1. To mea-
sure temperature, the LM35 sensor is utilized, while the SHT11
sensor is employed for measuring temperature and humidity. In
addition to these sensors, the system also incorporates an Aquar-
ium Air pump, power supply, and DC fan, as shown in Figure 1
(a). As the figure depicted, the sampling chamber is comprised of
a 31cm high and 5cm diameter cylinder, fitted with a DC fan at
one end and an electronic PCB containing a sensor array at the
other. A syringe for sample and air input is connected to the wall of
the chamber, with a paper towel substrate placed at the bottom to
collect ammonia liquid samples and allow for evaporation. The am-
bient temperature and relative humidity are detected by an SHT11
sensor and LM35. Then in order to volatilize ammonia gas in the
sampling room, ammonia with a known concentration is injected
into the sample syringe and then into the tissue in the sampling
chamber, causing the liquid to evaporate and form ammonia gas.
The sensors data in the next step sensor data acquired with the
help of Arduino Mega and stored in a Personal computer (PC) fol-
lowed to have some advantages like flexibility, low cost, ability
to connect and communicate with external parts such as sensors,
etc monitors, no need for additional software or other compilers
with a simple software environment. The proposed enose assembly
utilizes an aquarium pump to deliver fresh air and maintain a clean
sampling chamber. The pump has a compact size of 98X66X20mm
and requires only 4W of power. Additionally, a DC electric fan with
dimensions of 10x10cm and a voltage of 12v has been chosen to
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Table 1: The sensor parameters used in the experiment
Sensor Main sensing gas Measurement range
MQ2 LPG, propane, methane, hydrogen, carbon monoxide, and alcohol 300-10000ppm
MQ3 Ethanol Vapor 10-1000ppm
MQ5 LPG, propane, hydrogen, methane, and other combustible gases 300-10000ppm
MQ6 LPG, butane, propane, methane, alcohol, hydrogen, and smoke 300-10000ppm
MQ7 Carbon Monoxide 10-1000ppm
MQ137 Ammonia 5-200 ppm.
TGS813 Methane, Propane, Butane 500-10000ppm

72 vVOC —----
A3 Air ——
—~ VOC(Ammonia)
S Air
<
= _
= | o s _
- T
T
= A2
=
£
= 2
=3
g L,
< "
|
0 80 160 240 320 400
a Time (Second)

1
|
'«— Diameter: 5 Cm +'

ror e

Signal Processing

‘ Ardunio

Sensors Array

Figure 1: a: The second-order response curve of the sensor (TGS and MQ gas sensors) Al: The transient ascending stage A2: The
overshoot stage A3: The steady-state stage; b: Electronic nose sensor array data sampling system A: Temperature/Humidity
sensor (SHT11) B: DC fan C: Tissue paper. D: Injection syringe E: Inlet fresh air by Aquarium pump

expedite the cleaning process of the chamber. This fan will further
enhance the efficiency of the enose assembly [16]. In order to cal-
culate the ammonia concentration Equation 1) proposed by Wang,
et al. [17] was used.

_ 22.4pTV;
T 273MV

Equation 1) relates the concentration of ammonia in parts per mil-
lion (ppm), denoted by C, to the density of ammonia (p, measured
in g-mL™!), the temperature inside the experimental vessel (T, in
Kelvin), and the volume of the sampling chamber (V, in liter). The
equation also incorporates the volume of liquid ammonia (Vs, mea-
sured in microliters) and the molecular weight of ammonia (M, in
g-mol™?).

X 1000 (1)

2.3 Data Processing method

As mentioned [15, 18, 19], the enose sensor response can be divided
into three stages: the transient ascending stage, the overshoot stage,
and the steady-state stage. While the transient ascent stage con-
tains more information and data about the sensor response than the
steady-state stage [20, 21], Figure 1 (a). displays the second-order
response curve of the TGS and MQ gas sensors. In this experi-
ment, both the data from the transient ascending stage and the
steady-state stage were collected, processed, and analyzed as part
of the dataset. Then, after using the sensor array to extract the gas

characteristic information, MATLAB software is utilized for data
processing, incorporating PCA and the construction of an ANN for
enose data analysis in the Transient rise time area(A1l) as well as
steady-state(A2). These mentioned areas along with Both methods
are investigated for different concentrations in terms of PPM and
different odours.

2.3.1  Principal component analysis (PCA). PCA is a frequently uti-
lized statistical method that can reduce the dimension of data and
extract its characteristic information. With an increase in the num-
ber of sensors, the characteristic dimension of gas also increases
[22].

2.3.2  Multilayer Perceptron (MLP). MLP is a type of Artificial Neu-
ral Network (ANN) that operates similarly to human neurons. It
consists of an input layer, an output layer, and one or more hidden
layers, with multiple neurons in each layer. The Figure 2 (a) shows a
multilayer perceptron network topology assign for ammonia recog-
nition at different concentrations using MQ37 and TGS813.

Table 2 illustrates that in mode 1, both areas have an input layer
of 2, while the input layer for the second mode (M2) is set to 6. The
output layer for all modes is set to 4, with 25 hidden layer neurons
assigned. The proposed MLP structure utilizes the Rectified Linear
Unit (ReLU) as the activation function (Equation 2), which enables
MLP to perform nonlinear prediction and classification. This makes
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Table 2: THE MLP Network Setting Over Different Mode, M1: Different Concentration (PPM), M2: Different Odor;

Mode Area Input layer(Neurons number) Output layer(Neurons Hidden layer(Neurons number)
number)
M1 Al 2 4 25
A2 2 4 25
M2 Al 6 4 25
A2 6 4 25
Al Score Plot A2 Score Plot Al Test Confusion Matrix Al Validation Confusion Matrix
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it a useful tool for distinguishing and predicting gas types.

£ (x) = max (0,x) @

As Equation 2) shows if the input to the function (x) is greater
than zero, then the output will be equal to x. If the input is less
than or equal to zero, then the output will be zero. The ReLU func-
tion is popular in neural networks because it is computationally
efficient and has been shown to produce good results in many dif-
ferent types of problems. Additionally, the ReLU function is easier
to optimize using gradient-based methods, which are commonly
used for training neural networks. One potential downside of the
ReLU function is that it can "die" or "vanish" when the input to
the function is negative, which can lead to problems with learning.
In this paper, based on the proposed structure, the MLP networks
for transient and steady-state phases are constructed, sensor data
are used to train them respectively, and optimization models for
different phases are obtained.

3 RESULT AND DISCUSSION

As mentioned before the data was collected and investigated in
two areas of Transient rise time area (A1) and steady-state (A2)
in two parts of Identification of different concentrations (PPM) of
ammonia and odour identification which are described below.

3.1 Identification of different concentrations of
ammonia

In this experiment, MQ137 and TGS813 sensors were used to collect
data on four different concentrations of ammonia (100ppm, 200ppm,
400ppm, and pure Air). The steady-state stage contains a total of
9,346 data of MQ137 and TGS813 sensors, forming a matrix with a
size of 9,346x2. The transient phase is 2,703 pieces of data. After
normalizing the data, the PCA function is used to analyze the data.
Using graph-related functions, score plots can be plotted to visually
show the concentrations and types of gases.

The data used for MLP training was the same as that used for
PCA, 10% of the data was reserved for testing the accuracy of
the model, i.e. the data set used for training was an independent
part of the whole data set. The parameters of the MLP model are
shown in Table 2. The number of iterations is limited to 1000. The
extracted data for both methods is shown in Figure 2. As the result
shown in the PCA method for both A1 and A2 (transient response
or the steady-state response), the sensors can distinguish gas of
different concentrations from each other without concentrations
overlapping. In both areas, indicating that the sensor array has a
remarkable recognition effect on different concentrations of gas the
PC1 is greater than 90%. By using the MLP method the classification
of the steady-state stage (A2) by neural network is good, and the
accuracy of discrimination of four concentrations is more than 95%,
but the classification accuracy results in the transient-state stage
(A1) are not as good as that in the steady-state stage around 88.9%.
Besides the results shows, the resolution accuracy at 400ppm is less
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Figure 3: The obtained results in a: The PCA score chart of the transient stage(A1) and the steady-state stage(A2), b: MLP
classification confusion matrix. A: Air1 (a mixture of air and Ethanol) B:ammonia (pure ammonia gas) C: Air 2(a mixture of air

and Ammonia) D: ethanol (pure ethanol gas)

Table 3: The odour Identification over PCA and MLP, A1: Transient rise time area A2: Steady-state stage area

Method/ Area Parameter Cyclel Cycle2 Cycle3 Cycle4
PCA-A1 PC1 72.51% 86.86% 96.95% 90.40%
PCA-A2 PC1 83.38% 74.08% 90.22% 73.50%
MLP-A1 Training data volume 159 185 159 197
Accuracy 100% 100% 100% 100%
Test data volume 17 20 17 21
Accuracy 100% 100% 100% 100%
MLP-A2 Training data volume 720 360 360 360
Accuracy 100% 100% 100% 100%
Test data volume 80 40 40 40
Accuracy 100% 100% 100% 100%

than 90%, against the resolution accuracy at other concentrations
with 95%.

3.2 Different Odour Identification

As the second result to detect the different odours, a sensor array
changed, and use the MQ2, MQ3, MQ5, MQ6, MQ7, and MQ137
sensors are used to identify four kinds of gases with gas concen-
trations of 200ppm. considering the odour the four types of gas
with the fixed ppm values are used as follows; Airl (a mixture of
air and Ethanol), Air 2(a mixture of air and Ammonia), ethanol
(pure ethanol gas), and ammonia (pure ammonia gas); A complete
data acquisition cycle of the sensor includes the transient response
stage and the steady-state response stage. The experiment is carried
out four times with four cycles. At the end of each cycle, fans and
air pumps are used to ventilate the sampling room and exhaust
the sampling room. PCA and MLP were used to analyze the more
than 10,000 samples of data in the experiment. 10% of the data was

reserved for testing the accuracy of the model, The obtained results
are shown in Figure 3 and Table 3.

As the result shows, PCA score plots of steady-state and
transient-stage under four cycles of data acquisition, all gas types
are distinguished from each other in pairs, and the sensor array can
distinguish different types of gas. Detailed results of PCA and MLP
are shown in Table 3.

The accuracy of PCA in identifying the four gases is not as good
as the accuracy in identifying the four ammonia concentrations.
However, PC1 is greater than 70%, which can effectively distinguish
the types of gas. The recognition accuracy of MLP is 100%, and the
recognition effect is very excellent. In general, the accuracy of PCA
is not as high as MLP in the identification of the four gases.

4 CONCLUSION

Detecting ammonia gas is critical for a variety of reasons, including
protecting occupational safety by identifying this toxic gas and its
impact on human health, monitoring ammonia as an environmental
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pollutant, and ensuring food safety by detecting its use in refrig-
eration and the production of certain foods, such as baked goods
and chocolate. Studying gas sensor response in both transient and
steady-state regions offer numerous benefits. Figure 1 illustrates
that data collected during the transient response period, which typ-
ically lasts around 20 seconds, is much faster than the 40 seconds
required during the steady-state response phase. This delay allows
the sensor response to stabilize, resulting in a 50% reduction in
sensor performance time when operating in the transient region.
This study utilized MQ and TGS series semiconductor sensors to
construct an electronic nose system sensor array. By analyzing data
with PCA and MLP neural networks, the researchers discovered
that the electronic nose system could differentiate various concen-
trations of ammonia in both the steady-state and transient response
stages, as well as distinguish ammonia from other gases. The MLP
was successful in distinguishing gas concentrations except for con-
centrations exceeding 200 ppm and 400 ppm. The sensor array
demonstrated the ability to work in both transient and steady-state
response phases, and data could be read without the need to enter a
steady state, resulting in significant time savings. However, the accu-
racy of estimating transient gas concentration may be compromised
due to various reasons. For instance, the insufficient training data
with fewer data points for transient analysis as compared to steady-
state analysis, rapid changes, and shorter duration of the transient
phase, and concentration identification sensor array consisting of
only two sensors may fail to produce significant differences in sen-
sor responses at similar high concentrations such as 200ppm and
400ppm. Future work will entail investigating additional machine
learning methods to analyze and study sensor response, exploring
the performance of E-nose in steady-state and transient time while
examining the impact of temperature and humidity.
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